Volume 20 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
LI Yong, GUO Min, KANG Ying-ying. Research progress of microRNA in thyroid cancer[J]. Chinese Journal of General Practice, 2022, 20(2): 298-301, 351. doi: 10.16766/j.cnki.issn.1674-4152.002337
Citation: LI Yong, GUO Min, KANG Ying-ying. Research progress of microRNA in thyroid cancer[J]. Chinese Journal of General Practice, 2022, 20(2): 298-301, 351. doi: 10.16766/j.cnki.issn.1674-4152.002337

Research progress of microRNA in thyroid cancer

doi: 10.16766/j.cnki.issn.1674-4152.002337
Funds:

 2018096

 LH2019H017

  • Received Date: 2021-04-02
    Available Online: 2022-03-04
  • MiRNAs are short, single-stranded non-coding RNAs that exist in organisms widely and can regulate a lot of pathological and physiological processes. It is also differentially expressed in blood, urine and exosomes outside tissues. With the rapid development of detection technology, continuous improvement of research methods and continuous improvement of researcher' operational skills, miRNA has entered people' sight due to its stable molecular structure and abundant biological functions. Its differential expression and specific regulatory mechanisms in life processes such as inflammation, immune regulation, oxidative stress, fibrosis, information transmission, virus dissemination and tumor malignant progression are constantly being explored and confirmed, especially in the regulation of thyroid's occurrence, invasion, metastasis and drug resistance, indicating that it's expected to become a new indicator for precise diagnosis, treatment and prognosis evaluation of thyroid cancer. Furthermore, the research on miRNAs of their unknown functions and specific expression in different types of thyroid cancer is not only of great significance for diagnosis, identification and treatment of different pathological types of thyroid cancer, but also helps to dynamically observe the condition evolution of patients with thyroid cancer. This review summarizes the research progress, biology function of miRNA and its recent researches in different types of thyroid cancer, aiming to provide references for the diagnosis and treatment of thyroid cancer, enrich the diagnosis and treatment strategies for patients with thyroid cancer and improve the quality of their lives furtherly.

     

  • loading
  • [1]
    MILLER K D, NOGUEIRA L, MARIOTTO A B, et al. Cancer treatment and survi vorship statistics, 2019[J]. CA Cancer J Clin, 2019, 69(5): 363-385. doi: 10.3322/caac.21565
    [2]
    YIN D D, LI S S, SHU Q Y, et al. Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds[J]. Gene, 2018, 666(8): 72-82. http://smartsearch.nstl.gov.cn/paper_detail.html?id=733c382f4675b54b41e18f61deecf675
    [3]
    ZEALY R W, WRENN S P, DAVILA S, et al. microRNA-binding pro-teins: Specificity and function[J]. Wiley Interdiscip Rev RNA, 2017, 8(5): e1414. doi: 10.1002/wrna.1414
    [4]
    马瀚博, 李怀芳. MicroRNA在卵巢癌早期诊断及预后中应用的研究进展[J]. 中华全科医学, 2018, 16(5): 826-829. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201805043.htm
    [5]
    COUZIGOU J M, LAURESSERGUES D, ANDRE O, et al. Positive gene regulation by a natural protective miRNA enables arbuscular mycorrhizal symbiosis[J]. Cell Host Microbe, 2017, 21(1): 106-112. doi: 10.1016/j.chom.2016.12.001
    [6]
    CHEN P, CHEN J, HE L, et al. Identification of circRNA-miRNA-mRNA regulatory network in bladder cancer by integrated analysis[J]. Urologia Internationalis, 2021, 105(7-8): 705-715. doi: 10.1159/000512066
    [7]
    WANG X, DONG J, LI X, et al. CPSF4 regulates circRNA formation and microRNA mediated gene silencing in hepatocellular carcino-ma[J]. Oncogene, 2021, 40(25): 4338-4351. doi: 10.1038/s41388-021-01867-6
    [8]
    王艺霏, 敖翔, 刘英, 等. 线粒体miRNA及其生物学功能[J]. 中国细胞生物学学报, 2018, 40(7): 1247-1252. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZZ201807023.htm
    [9]
    BARTEL D P. Metazoan microRNAs[J]. Cell, 2018, 173(1): 20-51. doi: 10.1016/j.cell.2018.03.006
    [10]
    GHOSH U, ADHYA S. Posttranscriptional regulation of cyclin D1 by ARE-binding proteins AUF1 and HuR in cycling myoblasts[J]. J Biosci, 2018, 43(4): 685-691. doi: 10.1007/s12038-018-9788-8
    [11]
    SHEHATA R H, ABDELMONEIM S S, OSMAN O A, et al. Deregulation of miR-34a and Its chaperon hsp70 in hepatitis C virus-induced liver cirrhosis and hepatocellular carcinoma patients[J]. Asian Pac J Cancer Prev, 2017, 18(9): 2395-2401. http://europepmc.org/articles/PMC5720642?pdf=render
    [12]
    MANEECHOTESUWAN K. Role of microRNA in severe asthma[J]. Respir Investig, 2019, 57(1): 9-19. doi: 10.1016/j.resinv.2018.10.005
    [13]
    SHI Y, DAI S, QIU C, et al. MicroRNA-219a-5p suppresses intestinal in flammation through inhibiting Th1/Th17-mediated immune responses in in flammatory bowel disease[J]. Mucosal Immunol, 2020, 13(2): 303-312. doi: 10.1038/s41385-019-0216-7
    [14]
    HU Y, DU G, LI G, et al. The miR-122 inhibition alleviates lipid accumu lation and inflammation in NAFLD cell model[J]. Arch Physiol Bio chem, 2021, 127(5): 385-389. doi: 10.1080/13813455.2019.1640744
    [15]
    WAN X, CHEN S, FANG Y, et al. Mesenchymal stem cell derived extracellu lar vesicles suppress the fibroblast proliferation by downregulating FZD6 expression in fibroblasts via micrRNA-29b-3p in idiopathic pulmo nary fibrosis[J]. J Cell Physiol, 2020, 235(11): 8613-8625. doi: 10.1002/jcp.29706
    [16]
    ENGEDAL N, ZEROVNIK E, RUDOV A, et al. From oxidative stress damage to pathways, networks, and autophagy via microRNAs[J]. Oxid Med Cell Lon gev, 2018, 12(4): 4968321. http://downloads.hindawi.com/journals/omcl/2018/4968321.pdf
    [17]
    BIGGAR K K, STOREY K B. Functional impact of microRNA regulation in models of extreme stress adaptation[J]. J Mol Cell Biol, 2018, 10(2): 93-101. doi: 10.1093/jmcb/mjx053
    [18]
    LI Y, ZHANG H, DU Y, et al. Extracellular vesicle microRNA cargoes from intermittent hypoxia-exposed cardiomyocytes and their effect on endothe lium[J]. Biochem Biophys Res Commun, 2021, 548(9): 182-188. http://www.researchgate.net/publication/347640623_Extracellular_vesicle_microRNA_cargoes_from_intermittent_hypoxia-exposed_cardiomyocytes_and_their_effect_on_endothelium
    [19]
    CHAMORRO-JORGANES A, ANWAR M, EMANUELI C. Changes in high-density lipo protein microRNA might create a lasting memory of high-fat diet[J]. Cardiovasc Res, 2020, 116(7): 1237-1239. doi: 10.1093/cvr/cvz334
    [20]
    周丽杰, 金焰, 于景翠. 外泌体microRNA在肿瘤相关成纤维细胞与肿瘤细胞间交互影响中作用研究进展[J]. 中华实用诊断与治疗杂志, 2020, 34(12): 1282-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZD202012024.htm
    [21]
    RUHRMANN S, EWING E, PIKET E, et al. Hypermethylation of MIR21 in CD4+ T cells from patients with relapsing-remitting multiple sclerosis associ-ates with lower miRNA-21 levels and concomitant up regulation of its target genes[J]. Mult Scler, 2018, 24(10): 1288-1300. doi: 10.1177/1352458517721356
    [22]
    程燕, 何启胜. 血清miR-451a、miR-25-3p、GAS8-AS1联合检测用于早期甲状腺乳头状癌的诊断[J]. 国际内分泌代谢杂志, 2020, 40(5): 300-303.
    [23]
    JIANG K, LI G, CHEN W, et al. Plasma exosomal miR-146b-5p and miR-222-3p are potential biomarkers for lymph node metastasis in papillary thyroid carcinomas[J]. Onco Targets Ther, 2020, 13(2): 1311-1319. http://www.researchgate.net/publication/339215309_Plasma_Exosomal_miR-146b-5p_and_miR-222-3p_are_Potential_Biomarkers_for_Lymph_Node_Metastasis_in_Papillary_Thyroid_Carcinomas/download
    [24]
    YE W, DENG X, FAN Y. Exosomal miRNA423-5p mediated oncogene activity in papillary thyroid carcinoma: A potential diagnostic and biological tar get for cancer therapy[J]. Neoplasma, 2019, 66(4): 516-523. doi: 10.4149/neo_2018_180824N643
    [25]
    刘静, 陈红星, 许密, 等. 术后引流液外泌体hsa-miR-609在甲状腺乳头状癌发生发展中的作用及其机制探讨[J]. 岭南现代临床外科, 2019, 19(2): 150-153. doi: 10.3969/j.issn.1009-976X.2019.02.006
    [26]
    WANG Y, CEN A, YANG Y, et al. miR-181a, delivered by hypoxic PTC-secreted exosomes, inhibits DACT2 by downregulating MLL3, leading to YAP-VEGF-mediated angiogenesis[J]. Mol Ther Nucleic Acids, 2021, 24(2): 610-621. http://www.sciencedirect.com/science/article/pii/S2162253121000627
    [27]
    张建祥, 马艳梅, 张素琴, 等. 血浆微小RNA-21鉴别甲状腺滤泡癌与乳头状甲状腺癌[J]. 中华实验外科杂志, 2018, 35(10): 1921-1923. doi: 10.3760/cma.j.issn.1001-9030.2018.10.043
    [28]
    MA W, ZHAO X, LIANG L, et al. miR-146a and miR-146b promote proliferation, migration and invasion of follicular thyroid carcinoma via inhibition of ST8SIA4[J]. Oncotarget, 2017, 8(17): 28028-28041. doi: 10.18632/oncotarget.15885
    [29]
    李莹, 刁为英, 王彩霞, 等. 甲状腺滤泡癌中miR-133的表达及其诊断意义[J]. 临床与实验病理学杂志, 2020, 36(7): 779-783. https://www.cnki.com.cn/Article/CJFDTOTAL-LSBL202007007.htm
    [30]
    SASANAKIETKUL T, MURTHA T D, JAVID M, et al. Epigenetic modifications in poorly differentiated and anaplastic thyroid cancer[J]. Mol Cell Endo crinol, 2018, 469(5): 23-37. http://www.onacademic.com/detail/journal_1000039916680010_d901.html
    [31]
    ZHANG X, DONG S, JIA Q, et al. The microRNA in ventricular remodeling: The miR-30 family[J]. Biosci Rep, 2019, 39(8): BSR20190788. doi: 10.1042/BSR20190788
    [32]
    LI X F, SHEN W Z, JIN X, et al. Let-7c regulated epithelial-mesenchymal transition leads to osimertinib resistance in NSCLC cells with EGFR T790M mutations[J]. Sci Rep, 2020, 10(1): 11236. doi: 10.1038/s41598-020-67908-4
    [33]
    ZHANG X, LIU L, DENG X, et al. MicroRNA 483-3p targets pard3 to potentiate TGF-beta1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells[J]. Oncogene, 2019, 38(5): 699-715. doi: 10.1038/s41388-018-0447-1
    [34]
    MASOOD N, BASHARAT Z, KHAN T, et al. Entangling relation of micro RNA-let7, miRNA-200 and miRNA-125 with various cancers[J]. Pathol Oncol Res, 2017, 23(4): 707-715. doi: 10.1007/s12253-016-0184-0
    [35]
    BU Q, YOU F, PAN G, et al. MiR-125b inhibits anaplastic thyroid cancer cell migration and invasion by targeting PIK3CD[J]. Biomed Pharma-cother, 2017, 88(4): 443-448. http://www.onacademic.com/detail/journal_1000039818065310_1912.html
    [36]
    REDA E S S, CRISTANTE J, GUYON L, et al. MicroRNA therapeutics in cancer: Current advances and challenges[J]. Cancers (Basel), 2021, 13(11): 2680. doi: 10.3390/cancers13112680
    [37]
    TITOV S E, IVANOV M K, DEMENKOV P S, et al. Combined quantitation of HMGA2 mRNA, microRNAs, and mitochondrial-DNA content enables the identifi-cation and typing of thyroid tumors in fine-needle aspiration smears[J]. Bmc Cancer, 2019, 19(1): 1010. doi: 10.1186/s12885-019-6154-7
    [38]
    ROMEO P, COLOMBO C, GRANATA R, et al. Circulating miR-375 as a novel prognostic marker for metastatic medullary thyroid cancer pa-tients[J]. Endocr Relat Cancer, 2018, 25(3): 217-231. doi: 10.1530/ERC-17-0389
    [39]
    AUBERT S, BERDELOU A, GNEMMI V, et al. Large sporadic thyroid medullary carcinomas: Predictive factors for lymph node involvement[J]. Virchows Arch, 2018, 472(3): 461-468. doi: 10.1007/s00428-018-2303-7
    [40]
    JOO L, WEISS J, GILL A J, et al. RET kinase-regulated microRNA-153-3p improves therapeutic efficacy in medullary thyroid carcino-ma[J]. Thyroid, 2019, 29(6): 830-844. doi: 10.1089/thy.2018.0525
    [41]
    ZAHEER U, FAHEEM M, QADRI I, et al. Expression profile of microRNA: An emerging hallmark of cancer[J]. Curr Pharm Des, 2019, 25(6): 642-653. doi: 10.2174/1386207322666190325122821
    [42]
    李德宇, 李娜, 李文亮, 等. miR-130b与碘难治性分化型甲状腺癌的关系研究[J]. 实用药物与临床, 2019, 22(4): 368-373. https://www.cnki.com.cn/Article/CJFDTOTAL-LYLC201904007.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (413) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return