Citation: | CAO Jie-qiong, PEI Xiao-yan, HU Hong-yan, JIN Guo-xi. Function and significance of serum ficolin-3 level in type 2 diabetes mellitus with peripheral neuropathy[J]. Chinese Journal of General Practice, 2022, 20(4): 570-573. doi: 10.16766/j.cnki.issn.1674-4152.002402 |
[1] |
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 国际内分泌代谢杂志, 2021, 41(5): 482-548. doi: 10.3760/cma.j.cn121383-20210825-08063
Diabetes Society of Chinese Medical Association. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition)[J]. International Journal of Endocrinology and Metabolism, 2021, 41(5): 482-548. doi: 10.3760/cma.j.cn121383-20210825-08063
|
[2] |
中华医学会糖尿病学分会神经并发症学组. 糖尿病神经病变诊治专家共识(2021年版)[J]. 中华内分泌代谢杂志, 2021, 37(6): 499-515. doi: 10.3760/cma.j.cn311282-20210608-00357
Neurocomplications Group, Diabetes Society, Chinese Medical Association. Expert consensus on diagnosis and treatment of diabetic neuropathy (2021 edition)[J]. Chinese Journal of Endocrinology and Metabolism, 2021, 37(6): 499-515. doi: 10.3760/cma.j.cn311282-20210608-00357
|
[3] |
RASMUSSEN K L, NORDESTGAARD B G, NIELSEN S F. Complement C3 and risk of diabetic microvascular disease: A cohort study of 95202 individuals from the general population[J]. Clin Chem, 2018, 64(7): 1113-1124. doi: 10.1373/clinchem.2018.287581
|
[4] |
HAGEN K M, OUSMAN S S. Aging and the immune response in diabetic peripheral neuropathy[J]. J Neuroimmunol, 2021. DOI: 10.1016/j.jneuroim.2021.577574.
|
[5] |
ZHANG X, HU Y, SHEN J, et al. Low levels of ficolin-3 are associated with diabetic peripheral neuropathy[J]. Acta Diabetol, 2016, 53(2): 295-302. doi: 10.1007/s00592-015-0780-6
|
[6] |
胡方舟, 杨雯月, 谢小红, 等. 2型糖尿病患者合并周围神经病变的危险因素分析[J]. 中华全科医学, 2018, 16(5): 781-784. doi: 10.16766/j.cnki.issn.1674-4152.000213
HU F Z, YANG W T, XIE X H, et al. Risk factors analysis of diabetic peripheral neuropathy in patients with type 2 diabetes[J]. Chinese Journal of General Practice, 2018, 16(5): 781-784. doi: 10.16766/j.cnki.issn.1674-4152.000213
|
[7] |
YELL P C, BURNS D K, DITTMAR E G, et al. Diffuse microvascular C5b-9 deposition is a common feature in muscle and nerve biopsies from diabetic patients[J]. Acta Neuropathol Commun, 2018, 6(1): 11. doi: 10.1186/s40478-018-0512-6
|
[8] |
ILYAS R, WALLIS R, SOILLEUX E J, et al. High glucose disrupts oligosaccharide recognition function via competitive inhibition: A potential mechanism for immune dysregulation in diabetes mellitus[J]. Immunobiology, 2011, 216(1-2): 126-131. doi: 10.1016/j.imbio.2010.06.002
|
[9] |
ØSTERGAARD J, HANSEN T K, THIEL S, et al. Complement activation and diabetic vascular complications[J]. Clin Chim Acta, 2005, 361(1-2): 10-19. doi: 10.1016/j.cccn.2005.04.028
|
[10] |
PARSONS E S, STANLEY G J, PYNE A, et al. Single-molecule kinetics of pore assembly by the membrane attack complex[J]. Nat Commun, 2019, 10(1): 2066. doi: 10.1038/s41467-019-10058-7
|
[11] |
GHOSH P, VAIDYA A, SAHOO R, et al. Glycation of the complement regulatory protein CD59 is a novel biomarker for glucose handling in humans[J]. J Clin Endocrinol Metab, 2014, 99(6): E999-E1006. doi: 10.1210/jc.2013-4232
|
[12] |
SAHOO R, GHOSH P, CHOREV M, et al. A distinctive histidine residue is essential for in vivo glycation-inactivation of human CD59 transgenically expressed in mice erythrocytes: Implications for human diabetes complications[J]. Am J Hematol, 2017, 92(11): 1198-1203. doi: 10.1002/ajh.24886
|
[13] |
NOGUERAS-ORTIZ C J, MAHAIRAKI V, DELGADO-PERAZA F, et al. Astrocyte-and Neuron-Derived extracellular vesicles from Alzheimer ' s Disease patients effect complement-mediated neurotoxicity[J]. Cells, 2020, 9(7): 1618. doi: 10.3390/cells9071618
|
[14] |
ELZINGA S E, SAVELIEFF M G, O ' BRIEN P D, et al. Sex differences in insulin resistance, but not peripheral neuropathy, in a diet-induced prediabetes mouse model[J]. Dis Model Mech, 2021, 14(4): dmm048909. DOI: 10.1242/dmm.048909.
|
[15] |
GARCÍA G, GUTIÉRREZ-LARA E J, CENTURIÓN D, et al. Fructose-Induced insulin resistance as a model of neuropathic pain in rats[J]. Neuroscience, 2019, 404: 233-245. doi: 10.1016/j.neuroscience.2019.01.063
|
[16] |
HARTY B L, COELHO F, PEASE-RAISSI S E, et al. Myelinating Schwann cells ensheath multiple axons in the absence of E3 ligase component Fbxw7[J]. Nat Commun, 2019, 10(1): 2976. doi: 10.1038/s41467-019-10881-y
|
[17] |
HACKETT A R, STRICKLAND A, MILBRANDT J. Disrupting insulin signaling in Schwann cells impairs myelination and induces a sensory neuropathy[J]. Glia, 2020, 68(5): 963-978. doi: 10.1002/glia.23755
|
[18] |
LIU Y P, SHAO S J, GUO H D. Schwann cells apoptosis is induced by high glucose in diabetic peripheral neuropathy[J]. Life Sci, 2020, 248: 117459. DOI: 10.1016/j.lfs.2020.117459.
|
[19] |
CHEN H, LU J, CHEN X, et al. Low serum levels of the innate immune component ficolin-3 is associated with insulin resistance and predicts the development of type 2 diabetes[J]. J Mol Cell Biol, 2012, 4(4): 256-257. doi: 10.1093/jmcb/mjs032
|
[20] |
XUE T, ZHANG X, XING Y, et al. Advances about immunoinflammatory pathogenesis and treatment in diabetic peripheral neuropathy[J]. Front Pharmacol, 2021, 12: 748193. DOI: 10.3389/fphar.2021.748193.
|
[21] |
GE S, XIE J, ZHENG L, et al. Associations of serum anti-ganglioside antibodies and inflammatory markers in diabetic peripheral neuropathy[J]. Diabetes Res Clin Pract, 2016, 115: 68-75. doi: 10.1016/j.diabres.2016.02.005
|
[22] |
PLOVSING R R, BERG R M, MUNTHE-FOG L, et al. Alveolar recruitment of ficolin-3 in response to acute pulmonary inflammation in humans[J]. Immunobiology, 2016, 221(5): 690-697. doi: 10.1016/j.imbio.2015.11.015
|