Volume 20 Issue 5
May  2022
Turn off MathJax
Article Contents
YUAN Hang, CHU Wan-fei, XU Qiang. Effect of cardiac sympathetic nerve on the heart of spontaneously hypertensive rats[J]. Chinese Journal of General Practice, 2022, 20(5): 752-755. doi: 10.16766/j.cnki.issn.1674-4152.002446
Citation: YUAN Hang, CHU Wan-fei, XU Qiang. Effect of cardiac sympathetic nerve on the heart of spontaneously hypertensive rats[J]. Chinese Journal of General Practice, 2022, 20(5): 752-755. doi: 10.16766/j.cnki.issn.1674-4152.002446

Effect of cardiac sympathetic nerve on the heart of spontaneously hypertensive rats

doi: 10.16766/j.cnki.issn.1674-4152.002446
Funds:

 2016KYA011

  • Received Date: 2021-09-14
    Available Online: 2022-09-05
  •   Objective  To investigate the effect of cardiac sympathetic nerve on the heart of spontaneously hypertensive rats.  Methods  Thirty spontaneously hypertensive male rats aged 6-7 weeks were selected and divided into the observation group and control group according to the random number table method, each with 15 rats. The rats in the observation group were treated with sympathetic ganglion resection, and the sympathetic ganglion in the neck of the rats in the control group was exposed. The heart rate, blood pressure, left ventricular diastole, end-systolic diameter, left ventricular ejection fraction (LVEF) and myocardial collagen tissue Ⅰ, myocardial collagen tissue Ⅲ, connective tissue growth factor and norepinephrine transporter mRNA expression levels were compared between the two groups of rats.  Results  The heart rate of the observation group was significantly lower than that of the control group [(374.48±17.46) times/min vs. (403.12±14.56) times/min, t=4.879, P < 0.05]; The left ventricular end-diastolic diameter and left ventricular end-systolic diameter of the observation group were significantly lower than those in the control group [(4.97±0.52) mm vs. (4.51±0.45) mm, (3.06±0.23) mm vs. (2.57±0.17) mm, t=2.591, 6.635, all P < 0.05], The LVEF of the observation group was significantly lower than that in the control group [(71.48±4.46)% vs. (80.12±3.56)%, t=5.864, P < 0.05]; The expression of NET mRNA in the observation group were significantly higher than that in the control group (1.507±0.054 vs. 1.424±0.046, t=4.532, P < 0.05), and the expression of myocardial collagen Ⅲ and CTGF mRNA was significantly lower than that in the control group (1.245±0.046 vs. 1.359±0.036, 1.434±0.095 vs. 1.541±0.012, t=7.559, 4.328, P < 0.05).  Conclusion  Cardiac sympathetic nerve can adjust the CTGF, NET, inhibit myocardial hypertrophy and myocardial fibrosis in spontaneously hypertensive rats.

     

  • loading
  • [1]
    魏明慧, 薛明明. 高血压性心肌肥厚相关信号通路的研究进展[J]. 中国心血管病研究, 2020, 18(5): 460-464. doi: 10.3969/j.issn.1672-5301.2020.05.015

    WEI M H, XUE M M. Research progress of related signal pathway for hypertensive cardiac hypertrophy[J]. Chinese Journal of Cardiovascular Research, 2020, 18(5): 460-464. doi: 10.3969/j.issn.1672-5301.2020.05.015
    [2]
    中国老年学和老年医学学会心血管病分会, 中国高血压联盟. β受体阻滞剂治疗高血压的临床应用建议[J]. 中华心血管病杂志, 2019, 47(6): 443-446. doi: 10.3760/cma.j.issn.0253-3758.2019.06.004

    Chinese Society of Gerontology and Geriatrics Cardiovascular Disease Branch, Chinese Hypertension League. Recommendation on the application of β-blockers in the treatment of hypertension[J]. Chinese Journal of Cardiology, 2019, 47(6): 443-446. doi: 10.3760/cma.j.issn.0253-3758.2019.06.004
    [3]
    刘利勤, 李青, 胡明, 等. 应用Markov模型对3种血管紧张素Ⅱ受体拮抗剂预防高血压患者卒中和心肌梗死的经济学评价[J]. 中国药学杂志, 2019, 54(2): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX201902010.htm

    LIU L Q, LI Q, HU M, et al. The economic evaluation of three kinds of angiotensin Ⅱ receptor blockers in stroke and myocardial infarction prevention among hypertension patients using Markov model[J]. Chinese Pharmaceutical Journal, 2019, 54(2): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX201902010.htm
    [4]
    吴晓飞. 高血压急症识别与处理[J]. 中华全科医学, 2021, 19(1): 4-5. http://www.zhqkyx.net/article/id/7811fbee-ac5f-4dc8-914f-8c1fc9cbf2de

    WU X F. Emergency identification and management of hypertension[J]. Chinese general practice, 2021, 19(1): 4-5. http://www.zhqkyx.net/article/id/7811fbee-ac5f-4dc8-914f-8c1fc9cbf2de
    [5]
    HU L, WANG J, HUANG H, et al. YTHDF1 regulates pulmonary hypertension through translational control of MAGED1[J]. Am J Respir Crit Care Med, 2021, 203(9): 1158-1172. doi: 10.1164/rccm.202009-3419OC
    [6]
    MARTIN N, MANOHARAN K, DAVIES C, et al. Beta-blockers and inhibitors of the renin-angiotensin aldosterone system for chronic heart failure with preserved ejection fraction[J]. Cochrane Database Syst Rev, 2021, 5(5): CD012721. DOI: 10.1002/14651858.CD012721.pub3.
    [7]
    常乐, 李强, 廖建文, 等. 高血压患者自发性压力反射敏感性与靶器官损害的关系[J]. 中华高血压杂志, 2018, 26(7): 627-633. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGZ201807013.htm

    CHANG L, LI Q, LIAO J W, et al. The relationship between the spontaneous baroreflex sensitivity and target organ damage in hypertensive patients[J]. Chinese Journal of Hypertension, 2018, 26(7): 627-633. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGZ201807013.htm
    [8]
    肖冰, 杨秀春, 鲁静朝, 等. ADMA在交感神经损毁自发性高血压大鼠中的作用[J]. 安徽医科大学学报, 2018, 53(3): 382-385. https://www.cnki.com.cn/Article/CJFDTOTAL-YIKE201803011.htm

    XIAO B, YANG X C, LU J C, et al. Effect of ADMA in sympathectomized spontaneously hypertensive rat[J]. Acta Universitatis Medicinalis Anhui, 2018, 53(3): 382-385. https://www.cnki.com.cn/Article/CJFDTOTAL-YIKE201803011.htm
    [9]
    郭建强, 李素娟, 贾宇臣. 儿茶酚胺抑素在自发性高血压大鼠交感神经活化中的作用[J]. 中国现代医学杂志, 2019, 29(5): 12-16. doi: 10.3969/j.issn.1005-8982.2019.05.003

    GUO J Q, LI S J, JIA Y C. Role of Catestatin in sympathetic activation in spontaneously hypertensive rats[J]. China Journal of Modern Medicine, 2019, 29(5): 12-16. doi: 10.3969/j.issn.1005-8982.2019.05.003
    [10]
    DELALIO L J, SVED A F, STOCKER S D. Sympathetic nervous system contributions to hypertension: Updates and therapeutic relevance[J]. Can J Cardiol, 2020, 36(5): 712-720.
    [11]
    丁宇, 李世军. 心脏交感神经对自发性高血压大鼠心肌肥厚与心肌纤维化调节作用[J]. 中华老年心脑血管病杂志, 2018, 20(12): 1298-1301. doi: 10.3969/j.issn.1009-0126.2018.12.017

    DING Y, LI S J. Effect of cardiac sympathetic nerve on myocardial hypertrophy and fibrosis in spontaneous hypertension rats[J]. Chinese Journal of Geriatric Heart Brain and Vessel Diseases, 2018, 20(12): 1298-1301. doi: 10.3969/j.issn.1009-0126.2018.12.017
    [12]
    牛丹丹, 吕本艳. 原发性高血压病患者交感神经和迷走神经张力对静息心率的影响[J]. 新乡医学院学报, 2020, 37(5): 430-432. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYX202005009.htm

    NIU D D, LYU B Y. Effects of sympathetic nerve and vagal nerve tension on resting heart rate in patients with essential hypertension[J]. Journal of Xinxiang Medical University, 2020, 37(5): 430-432. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYX202005009.htm
    [13]
    贾娜, 曾学寨, 刘德平, 等. 高血压患者动态脉搏波速度与左心室肥厚和左心功能的关系[J]. 中国心血管病研究, 2020, 18(5): 395-400. doi: 10.3969/j.issn.1672-5301.2020.05.003

    JIA N, ZENG X Z, LIU D P, et al. Relationship between ambulatory pulse wave velocity and left ventricular structure and function in patients with primary hypertension[J]. Chinese Journal of Cardiovascular Research, 2020, 18(5): 395-400. doi: 10.3969/j.issn.1672-5301.2020.05.003
    [14]
    ZELT J G E, DEKEMP R A, ROTSTEIN B H, et al. Nuclear imaging of the cardiac sympathetic nervous system: A disease-specific interpretation in heart failure[J]. JACC Cardiovasc Imaging, 2020, 13(4): 1036-1054. doi: 10.1016/j.jcmg.2019.01.042
    [15]
    KARMACHARYA P, SINGH S, TIWARI I. Evaluation of sympathetic response in offsprings of hypertensive and normotensive parents[J]. J Nepal Health Res Counc, 2020, 17(4): 528-531. doi: 10.33314/jnhrc.v17i4.2270
    [16]
    KIUCHI M G, HO J K, NOLDE J M, et al. Sympathetic activation in hypertensive chronic kidney disease: A stimulus for cardiac arrhythmias and sudden cardiac death?[J]. Front Physiol, 2020, 14(10): 1546.
    [17]
    HERING L, RAHMAN M, HOCH H, et al. α2A-adrenoceptors modulate renal sympathetic neurotransmission and protect against hypertensive kidney disease[J]. J Am Soc Nephrol, 2020, 31(4): 783-798. doi: 10.1681/ASN.2019060599
    [18]
    李榕, 闫琪, 陶宁, 等. NET基因启动子区DNA甲基化在职业紧张所致高血压中的研究[J]. 职业与健康, 2019, 35(9): 1168-1170, 1175.

    LI R, YAN Q, TAO Y, et al. Study of methylation of DNA on promoter of NET gene in occupational stress-induced hypertension[J]. Occupation and Health, 2019, 35(9): 1168-1170, 1175.
    [19]
    谭文鹏, 李文杰, 黄兆琦. 上调miR-133a表达水平对自发性高血压大鼠心肌纤维化的影响[J]. 中国病理生理杂志, 2018, 34(6): 1142-1146. doi: 10.3969/j.issn.1000-4718.2018.06.031

    TAN W P, LI W J, HUANG Z Q. Up-regulation of miR-133a expression attenuates myocardial fibrosis in spontaneously hypertensive rats[J]. Chinese Journal of Pathophysiology, 2018, 34(6): 1142-1146. doi: 10.3969/j.issn.1000-4718.2018.06.031
    [20]
    戴永发, 李健玲, 覃翡, 等. 去肾动脉交感神经对自发性高血压大鼠交感肾上腺系统的影响[J]. 中国现代医学杂志, 2020, 30(17): 1-6. doi: 10.3969/j.issn.1005-8982.2020.17.001

    DAI Y F, LI J L, ZAO F, et al. Effects of renal artery denervation on sympathoadrenal system in spontaneously hypertensive rats[J]. China Journal of Modern Medicine, 2020, 30(17): 1-6. doi: 10.3969/j.issn.1005-8982.2020.17.001
    [21]
    冯宇, 周曼丽, 王健章, 等. 替米沙坦对自发性高血压大鼠左心室肥厚相关蛋白质谱的影响[J]. 中华高血压杂志, 2020, 28(8): 750-756. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGZ202008018.htm

    FENG Y, ZHOU M L, WANG J Z, et al. Effects of telmisartan on left ventricular hypertrophy related protein profiles in spontaneously hypertensive rats[J]. Chinese Journal of Hypertension, 2020, 28(8): 750-756. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGZ202008018.htm
    [22]
    YOO J K, FU Q. Impact of sex and age on metabolism, sympathetic activity, and hypertension[J]. FASEB J, 2020, 34(9): 11337-11346. doi: 10.1096/fj.202001006RR
    [23]
    李华妮, 郑连营, 王艳艳, 等. 莱菔子配伍蒺藜对自发性高血压大鼠的降压作用及机制研究[J]. 中国中医基础医学杂志, 2021, 27(5): 756-759, 865. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYJC202105016.htm

    LI H N, ZHENG L Y, WANG Y Y, et al. Experimental study on anti-hypertensive effects and mechanisms of semen raphani combined with tribuli fructus on spontaneous hypertension rats[J]. Journal of Basic Chinese Medicine, 2021, 27(5): 756-759, 865. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYJC202105016.htm
    [24]
    ROBLES-VERA I, TORAL M, DUARTE J. Microbiota and hypertension: Role of the sympathetic nervous system and the immune system[J]. Am J Hypertens, 2020, 33(10): 890-901.
    [25]
    WANG Q, DENG F X, ZHU D W. Superoxide anions modulate the effects of alarin in the paraventricular nucleus on sympathetic activity and blood pressure in spontaneously hypertensive rats[J]. Neuropeptides, 2020, 80: 102021.
    [26]
    SIGURDARDOTTIR H L, KRANZ G S, RAMI-MARK C, et al. Association of norepinephrine transporter methylation with in vivo NET expression and hyperactivity-impulsivity symptoms in ADHD measured with PET[J]. Mol Psychiatr, 2019, 26(3): 1009-1018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(3)

    Article Metrics

    Article views (203) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return