Citation: | ZHANG Gui-bing, HE Zheng-fei, SHANG Wen-zhong, WANG Ai-wei, WU Yan-fang, HUANG Hui-yan. Effect of triethanolamine on the biological characteristics of diffuse large B-cell lymphoma cells[J]. Chinese Journal of General Practice, 2022, 20(5): 785-788. doi: 10.16766/j.cnki.issn.1674-4152.002454 |
[1] |
金静霞, 郑翠苹, 陈丽雅, 等. PD-1、PD-L1在弥漫大B细胞淋巴瘤组织中的差异性表达及其临床意义[J]. 临床血液学杂志, 2018, 31(1): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXZ201801011.htm
JIN J X, ZHENG C P, CHEN L Y, et al. The differential expression levels and clinical significance of PD-1 and PD-L1 in tumor tissues of diffuse large B cell lymphoma[J]. Journal of Clinical Hematology, 2018, 31(1): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXZ201801011.htm
|
[2] |
王友群, 唐小万. CHOP方案联合美罗华治疗弥漫大B细胞淋巴瘤78例回顾性分析[J]. 中华全科医学, 2018, 16(6): 916-918. doi: 10.16766/j.cnki.issn.1674-4152.000251
WANG Y Q, TANG X W. A retrospective analysis of 78 cases of diffuse large B-cell lymphoma treated with CHOP chemotherapy regimen combined with rituximab[J]. Chinese general practice, 2018, 16(6): 916-918. doi: 10.16766/j.cnki.issn.1674-4152.000251
|
[3] |
CHEN T, YUAN Y, HUANG L S, et al. Dominant-negative PD1-armored CART cells induce remission in refractory diffuse large B-cell lymphoma (DLBCL) patients[J]. J Clin Oncol, 2019, 37(15): e19028.
|
[4] |
KHURANA A, MWANGI R, NOWAKOWSKI G S, et al. Impact of organ function based standard exclusion criteria in diffuse large b-cell lymphoma (DLBCL) patients: Who gets left behind?[J]. J Clin Oncol, 2020, 38(15_suppl): e14100.
|
[5] |
MONDELLO P, MIAN M. Frontline treatment of diffuse large B-cell lymphoma: Beyond R-CHOP[J]. Hematol Oncol, 2019, 37(4): 333-344.
|
[6] |
王怡, 夏冰, 张翼鷟. 复发/难治性弥漫大B细胞淋巴瘤的分子诊疗进展[J]. 中国实验血液学杂志, 2018, 26(2): 603-608. https://www.cnki.com.cn/Article/CJFDTOTAL-XYSY201802054.htm
WANG Y, XIA B, ZHANG Y Z. Therapeutic progress in relapse/refractory diffuse large-B-cell lymphoma[J]. Journal of Experimental Hematology, 2018, 26(2): 603-608. https://www.cnki.com.cn/Article/CJFDTOTAL-XYSY201802054.htm
|
[7] |
李晓阳, 吴志平, 王梦馨, 等. 表没食子儿茶素没食子酸酯抗癌分子机制及其应用的研究进展[J]. 中草药, 2019, 50(13): 3217-3229.
LI X Y, WU Z P, WANG M X, et al. Research progress on molecular mechanism of epigallocatechin-3-gallate against cancer and its application[J]. Chinese Traditional and Herbal Drugs, 2019, 50(13): 3217-3229.
|
[8] |
张丹丹. TEOA抗人结肠癌细胞作用机制的初步研究[D]. 杭州: 浙江大学, 2017.
ZHANG D D. Preliminary study on the mechanism of TEOA against human colon cancer cells[D]. Hangzhou: Zhejiang University, 2017.
|
[9] |
DUBOIS S, JARDIN F. Novel molecular classifications of DLBCL[J]. Nat Rev Clin Oncol, 2018, 15(8): 474-476.
|
[10] |
KAPADIA B, NANAJI N M, BHALLA K, et al. Fatty Acid Synthase induced S6Kinase facilitates USP11-eIF4B complex formation for sustained oncogenic translation in DLBCL[J]. Nat Commun, 2018, 9(1): 829.
|
[11] |
林剑扬, 郑艳彬, 何鸿鸣, 等. DLBCL的临床病理特征及影响预后的相关因素分析[J]. 中国实验血液学杂志, 2018, 26(3): 779-783. https://www.cnki.com.cn/Article/CJFDTOTAL-XYSY201803027.htm
LIN J Y, ZHENG Y B, HE H M, et al. Clinicopathological features and prognostic factors of DLBCL[J]. Journal of Experimental Hematology, 2018, 26(3): 779-783. https://www.cnki.com.cn/Article/CJFDTOTAL-XYSY201803027.htm
|
[12] |
葛超, 吕梦迪, 张自由, 等. 基于天然产物的铂类和芳基金属抗癌药物研究进展[J]. 无机化学学报, 2020, 36(4): 597-606. https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX202004002.htm
GE C, LYU M D, ZHANG Z Y, et al. Trends of platinum and metal-arene anticancer drugs based on natural products[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(4): 597-606. https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX202004002.htm
|
[13] |
TANG B, HUO Z, WU P. Study on a novel polyester composite nanofiltration membrane by interfacial polymerization of triethanolamine (TEOA) and trimesoyl chloride (TMC): I. Preparation, characterization and nanofiltration properties test of membrane[J]. J Membr Sci, 2008, 320: 198-205.
|
[14] |
韩波, 高志棣, 王海霞, 等. miR-155在弥漫大B细胞淋巴瘤组织中的表达及其对细胞生物学特性的影响[J]. 中国实验血液学杂志, 2019, 27(2): 445-451. https://www.cnki.com.cn/Article/CJFDTOTAL-XYSY201902026.htm
HAN B, GAO Z L, WANG H X, et al. Expression of miR-155 in tissue of patients with diffuse large B-cell lymphoma and its effect on cell biological characteristics[J]. Journal of Experimental Hematology, 2019, 27(2): 445-451. https://www.cnki.com.cn/Article/CJFDTOTAL-XYSY201902026.htm
|
[15] |
岳文君, 刘勇军, 陈京涛. NF-κB信号通路在弥漫大B细胞淋巴瘤中的作用及其靶向治疗中的应用[J]. 中国肿瘤生物治疗杂志, 2020, 27(1): 68-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLSW202001012.htm
YUE W J, LIU Y J, CHEN J T. The role of NF-κB signaling pathway in diffuse large B cell lymphoma and its application in targeted therapy[J]. Chinese Journal of Cancer Biotherapy, 2020, 27(1): 68-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLSW202001012.htm
|
[16] |
FU S, LUAN T, JIANG C Y, et al. miR-3622a promotes proliferation and invasion of bladder cancer cells by downregulating LASS2[J]. Gene, 2019, 701: 23-31.
|
[17] |
刘靖, 杨画, 寻阳, 等. sCXCL16对弥漫大B细胞淋巴瘤的体外生物学影响与初步机制[J]. 临床与实验病理学杂志, 2019, 35(4): 393-397. https://www.cnki.com.cn/Article/CJFDTOTAL-LSBL201904004.htm
LIU J, YANG H, XUN Y, et al. Effect of soluble CXCL16 on diffuse large B cell lymphoma in vitro and its preliminary mechanism[J]. Chinese Journal of Clinical and Experimental Pathology, 2019, 35(4): 393-397. https://www.cnki.com.cn/Article/CJFDTOTAL-LSBL201904004.htm
|
[18] |
胡施炜, 楼恩哲, 王瑜, 等. 大黄酸通过抑制NF-κB通路促进DLBCL细胞OCI-LY8凋亡[J]. 中国病理生理杂志, 2019, 35(11): 1974-1980. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBLS201911008.htm
HU S W, LOU E Z, WANG Y, et al. Rhein promotes DLBCL cell OCI-LY8 apoptosis by inhibiting NF-κB signaling pathway[J]. Chinese Journal of Pathophysiology, 2019, 35(11): 1974-1980. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBLS201911008.htm
|
[19] |
HOJJAT-FARSANGI M, GHADERI A, DANESHMANESH A H, et al. Diffuse large B cell lymphoma (DLBCL) expresses ROR1 and a ROR1 small molecule inhibitor (KAN0441571C) induced significant apoptosis of tumor cells[J]. Blood, 2019, 134(Suppl 1): 2565.
|
[20] |
余醒醒. TEOA通过激活ROS依赖的p38MAPK信号通路抑制弥漫性大B细胞淋巴瘤细胞的增殖并诱导其DNA损伤[D]. 蚌埠: 蚌埠医学院, 2019.
YU X X. TEOA inhibits proliferation and induces DNA damage of diffuse large B-cell lymphoma cells by activating ROS-dependent p38MAPK signaling pathway[D]. Bengbu: Bengbu Medical College, 2019.
|