Citation: | ZHANG Man, ZHOU Lan-zhu, SUN Zhe, WU Jun, WANG Wen-zhong. Analysis of the expression and clinical significance of POSTN in head and neck squamous carcinoma based on TCGA database[J]. Chinese Journal of General Practice, 2022, 20(6): 1066-1070. doi: 10.16766/j.cnki.issn.1674-4152.002525 |
[1] |
Global Burden of Disease Cancer Collaboration, FITZMAURICE C, ABATE D, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study[J]. JAMA Oncol, 2019, 5(12): 1749-1768. doi: 10.1001/jamaoncol.2019.2996
|
[2] |
蒋华丽, 杨成, 翁芬女, 等. 头颈部肿瘤放疗患者自我感受负担现状及影响因素分析[J]. 中华全科医学, 2019, 17(1): 144-146, 153. doi: 10.16766/j.cnki.issn.1674-4152.000623
JIANG H L, YANG C, WENG F N, et al. Study on the status of self-perceived burden and its influencing factors in patients with head and neck tumor for radiotherapy[J]. Chinese Journal of General Practice, 2019, 17(1): 144-146, 153. doi: 10.16766/j.cnki.issn.1674-4152.000623
|
[3] |
罗俊婷, 胡欣, 陈国芳, 等. 骨膜蛋白与代谢性疾病[J]. 国际内分泌代谢杂志, 2018, 38(1): 26-28. doi: 10.3760/cma.j.issn.1673-4157.2018.01.007
LUO J T, HU X, CHEN G F, et al. Periostin and metabolic diseases[J]. International JOurnal of Endocrinology and Metabolism, 2018, 38(1): 26-28. doi: 10.3760/cma.j.issn.1673-4157.2018.01.007
|
[4] |
OH H J, BAE J M, WEN X Y, et al. Overexpression of POSTN in tumor stroma is a poor prognostic indicator of colorectal cancer[J]. J Pathol Transl Med, 2017, 51(3): 306-313. doi: 10.4132/jptm.2017.01.19
|
[5] |
冀慎英, 张湘豫, 邹先琼. S100A8/A9在头颈部肿瘤发生发展中的作用及机制[J]. 医学综述, 2020, 26(21): 4235-4240. doi: 10.3969/j.issn.1006-2084.2020.21.015
JI S Y, ZHANG X Y, ZOU X Q. Roles and mechanisms of S100A8/A9 in initiation and progression of head and neck cancer[J]. Medical Recapitulate, 2020, 26(21): 4235-4240. doi: 10.3969/j.issn.1006-2084.2020.21.015
|
[6] |
ROUTRAY S, KUMAR R, DATTA K K, et al. An integrated approach for identification of a panel of candidate genes arbitrated for invasion and metastasis in oral squamous cell carcinoma[J]. Sci Rep, 2021, 11(1): 6208. doi: 10.1038/s41598-021-85729-x
|
[7] |
WANG Z C, CHEN M L, QIU Y B, et al. Identification of potential biomarkers associated with immune infiltration in the esophageal carcinoma tumor microenvironment[J]. Biosci Rep, 2021, 41(2): BSR20202 439. doi: 10.1042/BSR20202439
|
[8] |
RATAJCZAK-WIELGOMAS K, KMIECIK A, GRZEGRZOŁKA J, et al. Prognostic significance of stromal periostin expression in non-small cell lung cancer[J]. Int J Mol Sci, 2020, 21(19): 7025. doi: 10.3390/ijms21197025
|
[9] |
CHEN K, LI Z H, ZHANG M Y, et al. MiR-876 inhibits EMT and liver fibrosis via POSTN to suppress metastasis in hepatocellular carcinoma[J]. BioMed Res Int, 2020. DOI: 10.1155/2020/1964219.
|
[10] |
郭小凡. 低氧促进胶质母细胞瘤抑制性免疫微环境的形成[D]. 济南: 山东大学, 2020.
GUO X F. Hypoxia promotes the formation of inhibitory immune microenvironment in glioblastoma[D]. Jinan: Shandong University, 2020.
|
[11] |
ZHU M H, ZHANG C Y, CHEN D H, et al. MicroRNA-98-HMGA2-POSTN signal pathway reverses epithelial-to-mesenchymal transition in laryngeal squamous cell carcinoma[J]. Biomed Pharmacother, 2019. DOI: 10.1016/j.biopha.2019.108998.
|
[12] |
OKAZAKI T, TAMAI K, SHIBUYA R, et al. Periostin is a negative prognostic factor and promotes cancer cell proliferation in non-small cell lung cancer[J]. Oncotarget, 2018, 9(58): 31187-31199. doi: 10.18632/oncotarget.25435
|
[13] |
CHEN G, WANG Y, ZHAO X, et al. A positive feedback loop between Periostin and TGFβ1 induces and maintains the stemness of hepatocellular carcinoma cells via AP-2α activation[J]. J Exp Clin Cancer Res, 2021, 40(1): 218. doi: 10.1186/s13046-021-02011-8
|
[14] |
TANG M, LIU B J, BU X C, et al. Cross-talk between ovarian cancer cells and macrophages through periostin promotes macrophage recruitment[J]. Cancer Sci, 2018, 109(5): 1309-1318. doi: 10.1111/cas.13567
|
[15] |
ARNETH B. Tumor microenvironment[J]. Medicina (Kaunas), 2019, 56(1): 15. doi: 10.3390/medicina56010015
|
[16] |
LIN B, Li H, ZHANG T W, et, al. Comprehensive analysis of macrophage-related multigene signature in the tumor microenvironment of head and neck squamous cancer[J]. Aging (Albany NY), 2021, 13(4): 5718-5747.
|
[17] |
GAMBARDELLA V, CASTILLO J, TARAZONA N, et al. The role of tumor-associated macrophages in gastric cancer development and their potential as a therapeutic target[J]. Cancer Treat Rev, 2020, 86: 102015. DOI: 10.1016/j.ctrv.2020.102015.
|
[18] |
MA C Y, HORLAD H, OHNISHI K, et al. CD163-positive cancer cells are potentially associated with high malignant potential in clear cell renal cell carcinoma[J]. Med Mol Morphol, 2018, 51(1): 13-20. doi: 10.1007/s00795-017-0165-8
|
[19] |
MATTIOLA I, TOMAY F, DE P M, et al. The macrophage tetraspan MS4A4A enhances dectin-1-dependent NK cell-mediated resistance to metastasis[J]. Nat Immunol, 2019, 20(8): 1012-1022. doi: 10.1038/s41590-019-0417-y
|
[20] |
WALKER C, MOJARES E, DEL RÍO HERNÁNDEZ A. Role of extracellular matrix in development and cancer progression[J]. Int J Mol Sci, 2018, 19(10): 3028.
|
[21] |
PETROSYAN A, DA S S, TRIPURANENI N, et al. A step towards clinical application of acellular matrix: A clue from macrophage polarization[J]. Matrix Biol, 2017, 57-58: 334-346. DOI: 10.1016/j.matbio.2016.08.009.
|