Citation: | ZHOU Chao-rui, MA Wei-bin, YE Xiao-qian, CHEN Na, LI Ming-juan. Study on the inhibitory effect of propofol on upregulation of DR5 expression based on mouse melanoma lung metastasis model[J]. Chinese Journal of General Practice, 2022, 20(7): 1126-1130. doi: 10.16766/j.cnki.issn.1674-4152.002539 |
[1] |
WALSH C T. Propofol: Milk of amnesia[J]. Cell, 2018, 175(1): 10-13. doi: 10.1016/j.cell.2018.08.031
|
[2] |
HAUSBURG M A, BANTON K L, ROMAN P E, et al. Effects of propofol on ischemia-reperfusion and traumatic brain injury[J]. J Crit Care, 2020, 56: 281-287. doi: 10.1016/j.jcrc.2019.12.021
|
[3] |
LIU J H, AI P, SUN Y Y, et al. Propofol inhibits microglial activation via miR-106b/Pi3k/Akt Axis[J]. Front Cell Neurosci, 2021, 15: 768364. DOI: 10.3389/fncel.2021.768364.
|
[4] |
GAO X C, MI Y J, GUO N, et al. The mechanism of propofol in cancer development: An updated review[J]. Asia Pac J Clin Oncol, 2020, 16(2): e3-e11.
|
[5] |
WANG J Q, CHENG C S, LU Y, et al. Novel findings of anti-cancer property of propofol[J]. Anticancer Agents Med Chem, 2018, 18(2): 156-165. doi: 10.2174/1871520617666170912120327
|
[6] |
KAJIWARA M, KATO R, OI Y, et al. Propofol decreases spike firing frequency with an increase in spike synchronization in the cerebral cortex[J]. J Pharmacol Sci, 2020, 142(3): 83-92. doi: 10.1016/j.jphs.2019.11.005
|
[7] |
AHMED B, QADIR M I, GHAFOOR S. Malignant melanoma: Skin cancer-diagnosis, prevention, and treatment[J]. Crit Rev Eukaryot Gene Expr, 2020, 30(4): 291-297. doi: 10.1615/CritRevEukaryotGeneExpr.2020028454
|
[8] |
李旭文, 宋培军, 李薇, 等. miR-182增强黑色素瘤细胞增殖和侵袭的作用研究[J]. 中华全科医学, 2021, 19(9): 1474-1476, 1548. doi: 10.16766/j.cnki.issn.1674-4152.002089
LI X W, SONG P J, LI W, et al. MiR-182 enhances and promotes the proliferation and invasion of melanoma cells[J]. Chinese Journal of General Practice, 2021, 19(9): 1474-1476, 1548. doi: 10.16766/j.cnki.issn.1674-4152.002089
|
[9] |
DE MIGUEL D, LEMKE J, ANEL A, et al. Onto better TRAILs for cancer treatment[J]. Cell Death Differ, 2016, 23(5): 733-747. doi: 10.1038/cdd.2015.174
|
[10] |
KOJIMA Y, NISHINA T, NAKANO H, et al. Inhibition of Importin β1 augments the anticancer effect of agonistic anti-death receptor 5 antibody in TRAIL-resistant tumor cells[J]. Mol Cancer Ther, 2020, 19(5): 1123-1133. doi: 10.1158/1535-7163.MCT-19-0597
|
[11] |
XU Y C, PAN S Y, JIANG W X, et al. Effects of propofol on the development of cancer in humans[J]. Cell Prolif, 2020, 53(8): e12867.
|
[12] |
YAP A, LOPEZ-OLIVO M A, DUBOWITZ J, et al. Anesthetic technique and cancer outcomes: A meta-analysis of total intravenous versus volatile anesthesia[J]. Can J Anaesth, 2019, 66(5): 546-561. doi: 10.1007/s12630-019-01330-x
|
[13] |
何永军, 金玮蔚, 方弘伟. 丙泊酚与七氟烷对单肺通气状态下胸科手术患者炎症因子和肺功能影响的对比分析[J]. 中华全科医学, 2018, 16(12): 2021-2023, 2031. doi: 10.16766/j.cnki.issn.1674-4152.000551
HE Y J, JIN W W, FANG H W. Comparative analysis of effects of propofol and sevoflurane on inflammatory factors and pulmonary function in patients undergoing thoracic surgery with one lung ventilation[J]. Chinese Journal of General Practice, 2018, 16(12): 2021-2023, 2031. doi: 10.16766/j.cnki.issn.1674-4152.000551
|
[14] |
田诗意, 吴悠, 李远, 等. 丙泊酚抑制STAT3磷酸化对乳腺癌MCF-7细胞转移的影响[J]. 肿瘤, 2020, 40(8): 549-556. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLL202008004.htm
TIAN S Y, WU Y, LI Y, et al. Effect of propofol on metastasis of breast cancer MCF-7 cells by inhibiting phosphorylation of STAT3[J]. Tumor, 2020, 40(8): 549-556. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLL202008004.htm
|
[15] |
杨陈祎, 王海云, 王欣悦, 等. 丙泊酚对大鼠脑胶质瘤侵袭力的影响[J]. 中华麻醉学杂志, 2017, 37(11): 1342-1346.
YANG C Y, WANG H Y, WANG X Y, et al. Effect of propofol on invasion of cerebral glioma in rats[J]. Chinese Journal of Anesthesiology, 2017, 37(11): 1342-1346.
|
[16] |
孟星君, 李孝东, 刘俊, 等. C57BL/6 J小鼠黑色素瘤肺转移模型的构建[J]. 中国实验动物学报, 2018, 26(2): 139-144. doi: 10.3969/j.issn.1005-4847.2018.02.001
MENG X J, LI X D, LIU J, et al. Establishment of a C57BL/6 J mouse model of metastatic melanoma in the lung[J]. Acta Laboratorium Animalis Scientia Sinica, 2018, 26(2): 139-144. doi: 10.3969/j.issn.1005-4847.2018.02.001
|
[17] |
ZHANG J, ZHOU Y, LI N, et al. Curcumol overcomes TRAIL resistance of non-small cell lung cancer by targeting NRH: Quinone Oxidoreductase 2 (NQO2)[J]. Adv Sci (Weinh), 2020, 7(22): 2002306. DOI: 10.1002/advs.202002306.
|
[18] |
KIM B R, PARK S H, JEONG Y A, et al. RUNX3 enhances TRAIL-induced apoptosis by upregulating DR5 in colorectal cancer[J]. Oncogene, 2019, 38(20): 3903-3918. doi: 10.1038/s41388-019-0693-x
|
[19] |
MIN K J, WOO S M, SHAHRIYAR S A, et al. Elucidation for modulation of death receptor (DR) 5 to strengthen apoptotic signals in cancer cells[J]. Arch Pharm Res, 2019, 42(1): 88-100. doi: 10.1007/s12272-018-01103-y
|
[20] |
DENG D, SHAH K. TRAIL of hope meeting resistance in cancer[J]. Trends Cancer, 2020, 6(12): 989-1001. doi: 10.1016/j.trecan.2020.06.006
|
[21] |
MONTICO B, NIGRO A, CASOLARO V, et al. Immunogenic apoptosis as a novel tool for anticancer vaccine development[J]. Int J Mol Sci, 2018, 19(2): 594. doi: 10.3390/ijms19020594
|
[22] |
YUAN X, GAJAN A, CHU Q, et al. Developing TRAIL/TRAIL death receptor-based cancer therapies[J]. Cancer Metastasis Rev, 2018, 37(4): 733-748. doi: 10.1007/s10555-018-9728-y
|
[23] |
VON KARSTEDT S, MONTINARO A, WALCZAK H. Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy[J]. Nat Rev Cancer, 2017, 17(6): 352-366. doi: 10.1038/nrc.2017.28
|