Citation: | LIU Li. Research progress of intestinal peptides and the occurrence of anxiety and depression on the basis of the microbiota-gut-brain axis[J]. Chinese Journal of General Practice, 2022, 20(8): 1388-1391. doi: 10.16766/j.cnki.issn.1674-4152.002604 |
[1] |
MALHI G S, MANN J J. Depression[J]. Lancet, 2018, 392(10161): 2299-2312. doi: 10.1016/S0140-6736(18)31948-2
|
[2] |
梁姗, 吴晓丽, 胡旭, 等. 抑郁症研究的发展和趋势: 从菌-肠-脑轴看抑郁症[J]. 科学通报(英文版), 2018, 63(20): 2010-2025. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201820005.htm
LINANG S, WU X L, HU X, et al. The development and tendency of depression researches: Viewed from the microbiota-gut-brain axis[J]. Chinese Science Bulletin, 2018, 63(20): 2010-2025. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201820005.htm
|
[3] |
李鸿, 吕钦谕, 易正辉. 抑郁症合并焦虑症患者自杀态度调查及其与病情、应对方式的关系探讨[J]. 中华全科医学, 2019, 17(12): 2069-2071, 2134. doi: 10.16766/j.cnki.issn.1674-4152.001129
LI H, LYU Q Y, YI Z H. Investigation of suicide attitudes and its relationship with illness conditions and coping styles in patients with depression combined with anxiety disorder[J]. Chinese Journal of General Practice, 2019, 17(12): 2069-2071, 2134. doi: 10.16766/j.cnki.issn.1674-4152.001129
|
[4] |
TOMLINSON A, EFTHIMIOU O, BOADEN K, et al. Side effect profile and comparative tolerability of 21 antidepressants in the acute treatment of major depression in adults: Protocol for a network meta-analysis[J]. Evid Based Ment Health, 2019, 22(2): 61-66. doi: 10.1136/ebmental-2019-300087
|
[5] |
申变红, 陶云海, 朱春燕. 肠道菌群比例在精神分裂症发病中的作用及其与炎症因子的关系[J]. 中华全科医学, 2018, 16(2): 276-278. doi: 10.16766/j.cnki.issn.1674-4152.000077
SHEN B H, TAO Y H, ZHU C Y. The role of intestinal flora in the pathogenesis of schizophrenia and its relationship with inflammatory factors[J]. Chinese Journal of General Practice, 2018, 16(2): 276-278. doi: 10.16766/j.cnki.issn.1674-4152.000077
|
[6] |
CRYAN J F, O' RIORDAN K J, COWAN C S M, et al. The microbiota-gut-brain axis[J]. Physiol Rev, 2019, 99(4): 1877-2013. doi: 10.1152/physrev.00018.2018
|
[7] |
STOWER H. Gut-brain communication[J]. Nat Med, 2019, 25(12): 1799.
|
[8] |
LIMA-OJEDA J M, RUPPRECHT R, BAGHAI T C. Gut microbiota and depression: Hypothalamic-pituitary-adrenal axis and microbiota-gut-brain axis[J]. Nervenarzt, 2020, 91(12): 1108-1114. doi: 10.1007/s00115-020-01029-1
|
[9] |
CARLESSI A S, BORBA L A, ZUGNO A I, et al. Gut microbiota-brain axis in depression: The role of neuroinflammation[J]. Eur J Neurosci, 2021, 53(1): 222-235. doi: 10.1111/ejn.14631
|
[10] |
GAO X, CAO Q, CHENG Y, et al. Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response[J]. Proc Natl Acad Sci U S A, 2018, 115(13): E2960-E2969.
|
[11] |
LABUS J S, HOLLISTER E B, JACOBS J, et al. Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome[J]. Microbiome, 2017, 5(1): 49. doi: 10.1186/s40168-017-0260-z
|
[12] |
YU M, JIA H M, ZHOU C, et al. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics[J]. J Pharm Biomed Anal, 2017, 138(10): 231-239.
|
[13] |
HATA T, ASANO Y, YOSHIHARA K, et al. Regulation of gut luminal serotonin by commensal microbiota in mice[J]. PLoS One, 2017, 12(7): e0180745. DOI: 10.1371/journal.pone.0180745.
|
[14] |
LUKIĈI, GETSELTER D, ZIV O, et al. Antidepressants affect gut microbiota and ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior[J]. Transl Psychiatry, 2019, 9(1): 133. doi: 10.1038/s41398-019-0466-x
|
[15] |
ROSENBLAT J D, MCINTYRE R S. Efficacy and tolerability of minocycline for depression: A systematic review and meta-analysis of clinical trials[J]. J Affect Disord, 2018, 227(7): 219-225.
|
[16] |
GUIDA F, TURCO F, IANNOTTA M, et al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice[J]. Brain Behav Immun, 2018, 67(6): 230-245.
|
[17] |
BELLONO N W, BAYRER J R, LEITCH D B, et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways[J]. Cell, 2017, 170(1): 185-198. doi: 10.1016/j.cell.2017.05.034
|
[18] |
COHEN L J, ESTERHAZY D, KIM S H, et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules[J]. Nature, 2017, 549(7670): 48-53. doi: 10.1038/nature23874
|
[19] |
IZZI-ENGBEAYA C, JONES S, CRUSTNA Y, et al. Effects of peptide YY on the hypothalamic-pituitary-gonadal axis in healthy men[J]. J Clin Endocrinol Metab, 2020, 105(3): 833-838. doi: 10.1210/clinem/dgz103
|
[20] |
WU Y, HE H X, CHENG Z B, et al. The role of neuropeptide Y and peptide YY in the development of obesity via gut-brain axis[J]. Curr Protein Pept Sci, 2019, 20(7): 750-758. doi: 10.2174/1389203720666190125105401
|
[21] |
LIU R, ZHANG C H, SHI Y, et al. Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome[J]. Front Microbiol, 2017, 8(28): 324.
|
[22] |
CHRISTIANSEN C B, TRAMMELL S A J, WEWER A N J, et al. Bile acids drive colonic secretion of glucagon-like-peptide 1 and peptide-YY in rodents[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(5): G574-G584. doi: 10.1152/ajpgi.00010.2019
|
[23] |
HASSAN A M, MANCANO G, KASHOFER K, et al. Anhedonia induced by high-fat diet in mice depends on gut microbiota and leptin[J]. Nutr Neurosci, 2020, 15(4): 1-14.
|
[24] |
BRENNER L, ZERLIN L, TAN L L. Functional disruption of cortical cingulate activity attenuates visceral hypersensitivity and anxiety induced by acute experimental colitis[J]. Sci Rep, 2021, 11(1): 2103. doi: 10.1038/s41598-021-81256-x
|
[25] |
DETKA J, ŜLUSARCZYK J, KUREK A, et al. Hypothalamic insulin and glucagon-like peptide-1 levels in an animal model of depression and their effect on corticotropin-releasing hormone promoter gene activity in a hypothalamic cell line[J]. Pharmacol Rep, 2019, 71(2): 338-346. doi: 10.1016/j.pharep.2018.11.001
|
[26] |
ANDERSEN A, LUND A, KNOP F K, et al. Glucagon-like peptide 1 in health and disease[J]. Nat Rev Endocrinol, 2018, 14(7): 390-403. doi: 10.1038/s41574-018-0016-2
|
[27] |
YAMANE S, INAGAKI N. Regulation of glucagon-like peptide-1 sensitivity by gut microbiota dysbiosis[J]. J Diabetes Investig, 2018, 9(2): 262-264. doi: 10.1111/jdi.12762
|
[28] |
HUI S C, HUANG L, WANG X L, et al. Capsaicin improves glucose homeostasis by enhancing glucagon-like peptide-1 secretion through the regulation of bile acid metabolism via the remodeling of the gut microbiota in male mice[J]. FASEB J, 2020, 34(6): 8558-8573. doi: 10.1096/fj.201902618RR
|
[29] |
VENTORP F, BAY-RICHTER C, NAGENDRA A S, et al. Exendin-4 treatment improves LPS-induced depressive-Like behavior without affecting pro-inflammatory cytokines[J]. J Parkinsons Dis, 2017, 7(2): 263-273. doi: 10.3233/JPD-171068
|
[30] |
OCHI R, FUJITA N, GOTO N, et al. Region-specific brain area reductions and increased cholecystokinin positive neurons in diabetic OLETF rats: Implication for anxiety-like behavior[J]. J Physiol Sci, 2020, 70(1): 42. doi: 10.1186/s12576-020-00771-0
|
[31] |
SHEN C J, ZHENG D, LI K X, et al. Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior[J]. Nat Med, 2019, 25(2): 337-349. doi: 10.1038/s41591-018-0299-9
|
[32] |
DEUSSING J M, CHEN A. The corticotropin-releasing factor family: Physiology of the stress response[J]. Physiol Rev, 2018, 98(4): 2225-2286. doi: 10.1152/physrev.00042.2017
|
[33] |
WINTER J, JUREK B. The interplay between oxytocin and the CRF system: Regulation of the stress response[J]. Cell Tissue Res, 2019, 375(1): 85-91. doi: 10.1007/s00441-018-2866-2
|
[34] |
REYES B A S, KRAVETS J L, CONNELLY K L, et al. Localization of the delta opioid receptor and corticotropin-releasing factor in the amygdalar complex: Role in anxiety[J]. Brain Struct Funct, 2017, 222(2): 1007-1026. doi: 10.1007/s00429-016-1261-6
|
[35] |
POMRENZE M B, GIOVANETTI S M, MAIYA R, et al. Dissecting the roles of GABA and neuropeptides from rat central amygdala CRF neurons in anxiety and fear learning[J]. Cell Rep, 2019, 29(1): 13-21.
|
[36] |
WRÓBEL A, SEREFKO A, SZOPA A, et al. Inhibition of the CRF1 receptor influences the activity of antidepressant drugs in the forced swim test in rats[J]. Naunyn Schmiedebergs Arch Pharmacol, 2017, 390(8): 769-774.
|
[37] |
LI N N, WANG Q, WANG Y, et al. Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis[J]. Stress, 2019, 22(5): 592-602.
|
[38] |
YOON S, KIM Y K. The role of the oxytocin system in anxiety disorders[J]. Adv Exp Med Biol, 2020, 1191(1): 103-120.
|
[39] |
NA K S, WON E, KANG J, et al. Interaction effects of oxytocin receptor gene polymorphism and depression on hippocampal volume[J]. Psychiatry Res Neuroimaging, 2018, 282: 18-23.
|
[40] |
LAZZARI V M, ZIMMERMANN-PERUZATTO J M, et al. Hippocampal gene expression patterns in oxytocin male knockout mice are related to impaired social interaction[J]. Behav Brain Res, 2019, 364: 464-468.
|
[41] |
ABDELWAHAB L A, GALAL O O, ABD EL-RAHMAN S S, et al. Targeting the oxytocin system to ameliorate early life depressive-like behaviors in maternally-separated rats[J]. Biol Pharm Bull, 2021, 44(10): 1445-1457.
|
[42] |
SGRITTA M, DOOLING S W, BUFFINGTON S A, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder[J]. Neuron, 2019, 101(2): 246-259.
|
[43] |
VARIAN B J, POUTAHIDIS T, DIBENEDICTIS B T, et al. Microbial lysate upregulates host oxytocin[J]. Brain Behav Immun, 2017, 61(5): 36-49.
|