Citation: | BAO Yan-yuan, XI Yu-jiang, GAO Jia-mei, ZHANG Li-ping, XIE Zhao-hu, LI Zhao-fu. Role of long noncoding RNA on signaling pathways related to acute gout arthritis[J]. Chinese Journal of General Practice, 2022, 20(9): 1551-1554. doi: 10.16766/j.cnki.issn.1674-4152.002647 |
[1] |
李志军. 痛风及高尿酸血症的诊断与治疗[J]. 中华全科医学, 2020, 18(1): 5-6. http://www.zhqkyx.net/article/id/35702025-3b64-4c17-b820-044055abc76e
LI Z J. Diagnosis and treatment of gout and hyperuricemia[J]. Chinese Journal of General Practice, 2020, 18(1): 5-6. http://www.zhqkyx.net/article/id/35702025-3b64-4c17-b820-044055abc76e
|
[2] |
赖爱云, 徐健, 陶丽. TNF-α在痛风性关节炎患者炎性反应中的变化及意义[J]. 河北医药, 2019, 41(3): 388-391. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYZ201903015.htm
LAI A Y, XU J, TAO L. Changes and significance of TNF-α in inflammatory reaction in patients with gouty arthritis[J]. Hebei Medical Journal, 2019, 41(3): 388-391. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYZ201903015.htm
|
[3] |
朱克强, 王晨, 惠晓艳, 等. 肿瘤坏死因子α在痛风性关节炎发病机制中的作用研究进展[J]. 浙江医学, 2020, 42(6): 638-641. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYE202006037.htm
ZHU K Q, WANG C, HUI X Y, et al. Advances in the role of tumor necrosis factor α in the pathogenesis of gout arthritis[J]. Zhejiang Medical Journal, 2020, 42(6): 638-641. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYE202006037.htm
|
[4] |
DALBETH N, GOSLING A L, GAFFO A, et al. Gout[J]. Lancet, 2021, 397(10287): 1843-1855. doi: 10.1016/S0140-6736(21)00569-9
|
[5] |
高大玉, 张均雩, 李倩, 等. 痛风性关节炎急性发作期血尿下降的机制研究[J]. 医学研究生学报, 2022, 35(1): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYB202201013.htm
GAO D Y, ZHANG Y Y, LI Q, et al. Mechanism of hematuria decline in acute gout arthritis[J]. Journal of Medical Postgraduates, 2022, 35(1): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYB202201013.htm
|
[6] |
CHEN S L, CHEN J R, YANG S W. Painless gouty tophus in the nasal bridge: A case report and literature review[J]. Medicine (Baltimore), 2019, 98(11): e14850. DOI: 10.1097/MD.0000000000014850.
|
[7] |
夏雯洁, 张雅婷, 涂琳琳, 等. 长链非编码RNA作为自身免疫病生物标志物的研究进展[J]. 现代免疫学, 2022, 42(1): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SHMY202201010.htm
XIA W J, ZHANG Y T, TU L L, et al. Research advances of long non-coding RNA as the biomarker for autoimmune diseases[J]. Current Immunology, 2022, 42(1): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SHMY202201010.htm
|
[8] |
周蜜, 王一飞, 袁佳沁, 等. 急性痛风性关节炎免疫学发病机制研究进展[J]. 世界临床药物, 2018, 39(11): 779-782. https://www.cnki.com.cn/Article/CJFDTOTAL-GWHH201811014.htm
ZHOU M, WANG Y F, YUAN J Q, et al. Research progress on the immune-pathogenesis of acute gouty arthritis[J]. World Clinical Drugs, 2018, 39(11): 779-782. https://www.cnki.com.cn/Article/CJFDTOTAL-GWHH201811014.htm
|
[9] |
胡玉懿, 陈朴, 郭玮, 等. 髓样分化因子88多态性的研究进展[J]. 检验医学, 2020, 35(4): 380-386. doi: 10.3969/j.issn.1673-8640.2020.04.020
HU Y Y, CHEN B, GUO W, et al. Research progress of myeloid differentiation factor 88 polymorphism[J]. Laboratory Medicine, 2020, 35(4): 380-386. doi: 10.3969/j.issn.1673-8640.2020.04.020
|
[10] |
王雪霖, 曹秀梅, 闫建设. 中性粒细胞胞外诱捕网在痛风性关节炎中的作用: 一枚硬币的两面[J]. 自然杂志, 2021, 43(2): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ202102012.htm
WANG X L, CAO X M, YAN J S. The role of neutrophil extracellular traps in gouty arthritis: two sides of the same coin[J]. Chinese Journal of Nature, 2021, 43(2): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ202102012.htm
|
[11] |
冯华国, 冯毅, 张玲, 等. NLRPs炎性小体激活和调控机制研究现状[J]. 检验医学与临床, 2021, 18(20): 3048-3051. doi: 10.3969/j.issn.1672-9455.2021.20.036
FENG H G, FENG Y, ZHANG L, et al. Current research on activation and regulation of NLRPs inflammasome[J]. Laboratory Medicine and Clinic, 2021, 18(20): 3048-3051. doi: 10.3969/j.issn.1672-9455.2021.20.036
|
[12] |
MEYERS A K, ZHU X. The NLRP3 inflammasome: Metabolic regulation and contribution to inflammaging[J]. Cells, 2020, 9(8): 1808. doi: 10.3390/cells9081808
|
[13] |
XIA X M, LU B, DONG W J, et al. Atypical gasdermin D and mixed lineage kinaxe domain-like protein leakage aggravates tetrachiorobenzoquinone-induce NOD-like receptoe protein 3 inflammasome activivation[J]. Chen Res Toxicol, 2018, 31(12): 1418-1425. doi: 10.1021/acs.chemrestox.8b00306
|
[14] |
JIANG D Y, LI W H, REN P P, et al. Progress in the mechanism of purinergic receptor P2X, ligand-gated ion channel 7 and its downstrream molecules in gouty arthritis[J]. WJTCM, 2020, 15(8): 1221-1224.
|
[15] |
QIA X Y, ZHAO J Y, YEUNG P Y, et al. Revealing lncRNA structures and interactions by sequencing-based approaches[J]. Trends Biochem Sci, 2019, 44(1): 33-52.
|
[16] |
CORLEY M, BURNS M C, YEO G W. How RNA-binding proteins interact with RNA: Molecules and mechanisms[J]. Mol Cell, 2020, 78(1): 9-29.
|
[17] |
刘磊, 赵天仪, 曹灵, 等. 急性痛风自发性缓解机制研究进展[J]. 中华风湿病学杂志, 2018, 22(3): 208-211.
LIU L, ZHAO T Y, CAO L, et al. Research progress on mechanism of spontaneous remission of acute gout[J]. Chinese Journal of Rheumatology, 2018, 22(3): 208-211.
|
[18] |
ROBINSON E K, COVARRUBIAS S, CARPENTER S. The how and why of lncRNA function: An innate immune perspective[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(4): 194419. DOI: 10.1016/j.bbagrm.2019.194419.
|
[19] |
CHEN W X, LIU S N, WANG F. Potential impact and mechanism of Long Non-coding RNAs on cancer and associated T cells[J]. J Cancer, 2021, 12(16): 4873-4882.
|
[20] |
ZHANG W, YANG M Y, YU L, et al. Long non-coding RNA lnc-DC in dendritic cells regulates trophoblast invasion via p-STAT3-mediated TIMP/MMP expression[J]. Am J Reprod Immunol, 2020, 83(6): e13239. DOI: 10.1111/aji.13239.
|
[21] |
JAFARI L, IZADIRAD M, VATANMAKANIAN M, et al. IFNG-AS1 and MAF4 long non-coding RNAs are upregulated in acute leukemia patients who underwent bone marrow transplantation[J]. Curr Res Transl Med, 2021, 69(4): 103307. DOI: 10.1016/j.retram.2021.103307.
|
[22] |
LEE C P, HUANG Y N, Nithiyanantham S, et al. LncRNA-Jak3: Jak3 coexpressed pattern regulates monosodium urate crystal-induced osteoclast differentiation through Nfatc1/Ctsk expression[J]. Environ Toxicol, 2019, 34(2): 179-187.
|
[23] |
ZHANG Q, CHAO T C, PATIL V S, et al. The long noncoding RNA ROCKI regulates inflammatory gene expression[J]. EMBO J, 2019, 38(8): e100041. DOI: 10.15252/embj.2018100041.
|
[24] |
LI J S, WANG M W, SONG L T, et al. LncRNA MALAT1 regulates inflammatory cytokine production in lipopolysaccharide-stimulated human gingival fibroblasts through sponging miR-20a and activating TLR4 pathway[J]. J Periodontal Res, 2020, 55(2): 182-190.
|
[25] |
潘显阳, 陶金辉, 李向培. 痛风性关节炎发病的炎性机制研究进展[J]. 安徽医科大学学报, 2021, 56(7): 1167-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-YIKE202107032.htm
PAN X Y, TAO J H, LI X P. Advances in the inflammatory mechanism of gout arthritis[J]. Acta Universitatis Medicinalis Anhui, 2021, 56(7): 1167-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-YIKE202107032.htm
|
[26] |
LIU C L, DENG Z Y, DU E R, et al. Long non coding RNA BC168687 small interfering RNA reduces high glucose and high free fatty acid induced expression of P2X7 receptors in satellite glial cells[J]. Mol Med Rep, 2018, 17(4): 5851-5859.
|
[27] |
HUANG N, FAN Z D, MA L, et al. Long non coding RNA RP11 340F14.6 promotes a shift in the Th17/Treg ratio by binding with P2X7R in juvenile idiopathic arthritis[J]. Int J Mol Med, 2020, 46(2): 859-868.
|
[28] |
HU J C, WU H, WANG D C, et al. LncRNA ANRIL promotes NLRP3 inflammasome activation in uric acid nephropathy through miR-122-5p/BRCC3 axis[J]. Biochimie, 2018, 157(2): 102-110.
|
[29] |
XUE Z Y, ZHANG Z M, LIU H K, et al. lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation[J]. Cell Death Differ, 2019, 26(1): 130-145.
|
[30] |
YU H, LIN L B, ZHANG Z Q, et al. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study[J]. Signal Transduct Target Ther, 2020, 5(1): 209.
|
[31] |
GUPTA S C, AWASTHEE N, RAI V, et al. Long non-coding RNAs and nuclear factor-κB crosstalk in cancer and other human diseases[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(1): 188316. DOI: 10.1016/j.bbcan.2019.188316.
|
[32] |
WEI S B, LIU Q Y. Long noncoding RNA MALAT1 modulates sepsis-induced cardiac inflammation through the miR-150-5p/NF-κB axis[J]. Int J Clin Exp Pathol, 2019, 12(9): 3311-3319.
|
[33] |
ZHANG P H, YU C L, YU J W, et al. Arid2-IR promotes NF-κB-mediated renal inflammation by targeting NLRC5 transcription[J]. Cell Mol Life Sci, 2021, 78(5): 2387-2404.
|
[34] |
MA M R, PEI Y F, WANG X X, et al. LncRNA XIST mediates bovine mammary epithelial cell inflammatory response via NF-κB/NLRP3 inflammasome pathway[J]. Cell Prolif, 2019, 52(1): e12525. DOI: 10.1111/cpr.12525.
|
[35] |
CORREIA M, GJORGJIEVA M, DOLICKA D, et al. Deciphering miRNAs ' action through miRNA editing[J]. Int J Mol Sci, 2019, 20(24): 6249.
|
[36] |
KANDELL W M, DONATELLI S S, TRINH T L, et al. MicroRNA-155 governs SHIP-1 expression and localization in NK cells and regulates subsequent infiltration into murine AT3 mammary carcinoma[J]. PLoS One, 2020, 15(2): e0225820. DOI: 10.1371/journal.pone.0225820.
|
[37] |
ZHANG Q B, QING Y F, QIN C C, et al. Mice with miR-146a deficiency develop severe gouty arthritis via dysregulation of TRAF 6, IRAK 1 and NALP3 inflammasome[J]. Arthritis Res Ther, 2018, 20(1): 45.
|
[38] |
MA T, LIU X, CEN Z F, et al. MicroRNA-302b negatively regulates IL-1β production in response to MSU crystals by targeting IRAK4 and EphA2[J]. Arthritis Res Ther, 2018, 20(1): 34.
|
[39] |
ZHOU R S, ZHANG E X, SUN Q F, et al. Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue[J]. BMC Cancer, 2019, 19(1): 779.
|
[40] |
李林林, 吴聪. 长链非编码RNA在自身免疫性疾病中的研究进展[J]. 基础医学与临床, 2019, 39(4): 573-576. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYL201904023.htm
LI L L, HAO C. Research progress of long noncoding RNAs in autoimmune diseases[J]. Basic & Clinical Medicine, 2019, 39(4): 573-576. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYL201904023.htm
|