Citation: | TUERSUNAYI·Yisimitila, ALIMIJIANG·Abulimiti, MAIHEFURETI·Wufuer, YUAN Yu-juan, PATIGULI·Kadierjiang, MUYESAI·Nijati. IL-33/ST2 pathway in atherosclerosis: the IL-33 paradox[J]. Chinese Journal of General Practice, 2023, 21(1): 19-23. doi: 10.16766/j.cnki.issn.1674-4152.002802 |
[1] |
PROUT M S, KYLE R L, RONCHESE F, et al. IL-4 Is a key requirement for IL-4- and IL-4/IL-13-expressing CD4 Th2 subsets in lung and skin[J]. Frontiers in immunology, 2018, 9: 1211. DOI: 10.3389/fimmu.2018.01211.
|
[2] |
CAYROL C, GIRARD J P. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family[J]. Immunological reviews, 2018, 281(1): 154-168. doi: 10.1111/imr.12619
|
[3] |
WOLF D, LEY K. Immunity and inflammation in atherosclerosis[J]. Circ Res, 2019, 124(2): 315-327. doi: 10.1161/CIRCRESAHA.118.313591
|
[4] |
LUNDBECH M, KRAG A E, CHRISTENSEN T D, et al. Thrombin generation, thrombin-antithrombin complex, and prothrombin fragment F1+2 as biomarkers for hypercoagulability in cancer patients[J]. Thromb Res, 2020, 186: 80-85. doi: 10.1016/j.thromres.2019.12.018
|
[5] |
BRETSCHER P. On analyzing how the Th1/Th2 phenotype of an immune response is determined: classical observations must not be ignored[J]. Front Immunol, 2019, 10: 1234. DOI: 10.3389/fimmu.2019.01234.
|
[6] |
STARK J M, TIBBITT C A, COQUET J M. The metabolic requirements of Th2 cell differentiation[J]. Front Immunol, 2019, 10: 2318. DOI: 10.3389/fimmu.2019.02318.
|
[7] |
MURDACA G, GRECO M, TONACCI A, et al. IL-33/IL-31 axis in immune-mediated and allergic diseases[J]. Int J Mol Sci, 2019, 20(23): 5856. DOI: 10.3390/ijms20235856.
|
[8] |
ITO T, KAGEYAMA R, NAKAZAWA S, et al. Understanding the significance of cytokines and chemokines in the pathogenesis of alopecia areata[J]. Exp Dermatol, 2020, 29(8): 726-732. doi: 10.1111/exd.14129
|
[9] |
LI W P, LI Y Y, JIN J. The essential function of IL-33 in metabolic regulation[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52(7): 768-775. doi: 10.1093/abbs/gmaa045
|
[10] |
RUTERBUSCH M, PRUNER K B, SHEHATA L, et al. In vivo CD4+ T cell differentiation and function: revisiting the Th1/Th2 paradigm[J]. Annu Rev Immunol, 2020, 38: 705-725. doi: 10.1146/annurev-immunol-103019-085803
|
[11] |
中华医学会, 中华医学会杂志社, 中华医学会全科医学分会, 等. 稳定性冠心病基层诊疗指南(2020年)[J]. 中华全科医师杂志, 2021, 20(3): 265-273.
Chinese Medical Association, Chinese Medical Association magazine, Chinese Medical Association Branch of General Practice, etc. Primary Diagnosis and Treatment Guidelines for Stable Coronary Heart Disease (2020)[J]. Chinese Journal of General Practice, 2021, 20(3): 265-273.
|
[12] |
DEMYANETS S, STOJKOVIC S, HUBER K, et al. The paradigm change of IL-33 in vascular biology[J]. Int J Mol Sci, 2021, 22(24): 13288. DOI: 10.3390/ijms222413288.
|
[13] |
PUSCEDDU I, DIEPLINGER B, MUELLER T. ST2 and the ST2/IL-33 signalling pathway-biochemistry and pathophysiology in animal models and humans[J]. Clinica Chimica Acta, 2019, 495: 493-500. doi: 10.1016/j.cca.2019.05.023
|
[14] |
PFEILER S, WINKELS H, KELM M, et al. IL-1 family cytokines in cardiovascular disease[J]. Cytokine, 2019, 122: 154215. DOI: 10.1016/j.cyto.2017.11.009.
|
[15] |
AJITHKUMAR V, AXEL K. Interleukin (IL)-33 and the IL-1 family of cytokines-regulators of inflammation and tissue homeostasis[J]. Cold Spring Harb Perspect Biol, 2019, 11(3): a028506. DOI: 10.1101/cshperspect.a028506.
|
[16] |
KONG D H, KIM Y K, KIM M R, et al. Emerging roles of vascular cell adhesion molecule-1 (VCAM-1) in immunological disorders and cancer[J]. Int J Mol Sci, 2018, 19(4): 1057. DOI: 10.3390/ijms19041057.
|
[17] |
LIU X X, XIAO Y C, PAN Y, et al. The role of the IL-33/ST2 axis in autoimmune disorders: friend or foe?[J]. Cytokine Growth Factor Rev, 2019, 50: 60-74. doi: 10.1016/j.cytogfr.2019.04.004
|
[18] |
LI J, MENG Q H, FU J, et al. Novel insights: Dynamic foam cells derived from the macrophage in atherosclerosis[J]. J Cell Physiol, 2021, 236(9): 6154-6167. doi: 10.1002/jcp.30300
|
[19] |
BÄCK M, JR A Y, TABAS I, et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities[J]. Nat Rev Cardiol, 2019, 16(7): 389-406.
|
[20] |
XIE Z L, WANG X D, LIU X X, et al. Adipose-derived exosomes exert proatherogenic effects by regulating macrophage foam cell formation and polarization[J]. J Am Heart Assoc, 2018, 7(5): e007442. DOI: 10.1161/JAHA.117.007442.
|
[21] |
CAYROL C. IL-33, an alarmin of the IL-1 family involved in allergic and non allergic inflammation: focus on the mechanisms of regulation of its activity[J]. Cells, 2021, 11(1): 107. doi: 10.3390/cells11010107
|
[22] |
TANG H N, LIU N, FENG X J, et al. Circulating levels of IL-33 are elevated by obesity and positively correlated with metabolic disorders in Chinese adults[J]. J Transl Med, 2021, 19(1): 52. DOI: 10.1186/s12967-021-02711-x.
|
[23] |
AOKI S, HAYAKAWA M, OZAKI H, et al. ST2 gene expression is proliferation-dependent and its ligand, IL-33, induces inflammatory reaction in endothelial cells[J]. Mol Cell Biochem, 2010, 335(1-2): 75-81. doi: 10.1007/s11010-009-0244-9
|
[24] |
MCLAREN J E, MICHAEL D R, SALTER R C, et al. IL-33 reduces macrophage foam cell formation[J]. J Immunol, 2010, 185(2): 1222-1229. doi: 10.4049/jimmunol.1000520
|
[25] |
DEMYANETS S, KONYA V, KASTL S P, et al. Interleukin-33 induces expression of adhesion molecules and inflammatory activation in human endothelial cells and in human atherosclerotic plaques[J]. Arterioscler Thromb Vasc Biol, 2011, 31(9): 2080-2089. doi: 10.1161/ATVBAHA.111.231431
|
[26] |
WU F Q, HE M A, WEN Q, et al. Associations between variants in IL-33/ST2 signaling pathway genes and coronary heart disease risk[J]. Int J Mol Sci, 2014, 15(12): 23227-23239. doi: 10.3390/ijms151223227
|