Volume 21 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
XU Zu-liang, SHENG Liang, HE Xia-xia, WANG Yan-na, WANG Guo-yu. Multi-sequence MRI image data-based machine learning model in the diagnosis of benign and malignant parotid gland tumours[J]. Chinese Journal of General Practice, 2023, 21(1): 108-111. doi: 10.16766/j.cnki.issn.1674-4152.002824
Citation: XU Zu-liang, SHENG Liang, HE Xia-xia, WANG Yan-na, WANG Guo-yu. Multi-sequence MRI image data-based machine learning model in the diagnosis of benign and malignant parotid gland tumours[J]. Chinese Journal of General Practice, 2023, 21(1): 108-111. doi: 10.16766/j.cnki.issn.1674-4152.002824

Multi-sequence MRI image data-based machine learning model in the diagnosis of benign and malignant parotid gland tumours

doi: 10.16766/j.cnki.issn.1674-4152.002824
Funds:

 2021KY396

  • Received Date: 2022-07-12
    Available Online: 2023-04-07
  •   Objective  The clinical value of multi-sequence MRI image data-based radiomics in the diagnosed of benign and malignant parotid gland tumors.  Methods  A total of 97 patients with parotid gland tumours diagnosed by pathological examination in Taizhou Central Hospital from January 1, 2021 to May 30, 2022 were selected, including 64 benign tumours and 33 malignant tumours. Meantime, patients' clinical data and MRI images were extracted. ITK-SNAP was used to segment regions of interest. In addition, PyRadiomics plugin of 3D-Slicer was used to extract 120 image features from T1-weighted contrast enhancement images (T1Wce), T2-weighted images (T2WI) and apparent diffusion coefficient (ADC) images that were constructed on the basis of diffusion-weighted imaging (DWI) sequence. Then, Lasso regression was used for the reduction of image features. Finally, a support vector machine model (SVM) was constructed using the selected image features. Then, the ROC curve was drawn to evaluate the diagnostic efficiency of each model.  Results  No significant differences in age and gender ratio was observed between the two groups. Four imaging models were constructed, including the models based on T1Wce, T2WI, ADC images and the combination of the three sequences. The AUC was as follows: T1Wce model 0.752, T2WI model 0.776, ADC model 0.810, T1Wce+T2WI+ADC model 0.897. The AUC of the three-sequence combination model was significantly higher than that of the single-sequence model.  Conclusion  The radiomics model based on MRI image data can be effectively used for assisting the diagnosis of benign and malignant parotid gland tumours. Moreover, the model based on the combination of T1Wce, T2WI and ADC images has the best diagnostic efficiency.

     

  • loading
  • [1]
    江晓勇, 杨志辉, 陈希希, 等. 不同类型腮腺肿瘤的临床特点及远期复发情况分析[J]. 中华全科医学, 2019, 17(5): 790-792, 796. doi: 10.16766/j.cnki.issn.1674-4152.000793

    JIANG X Y, YANG Z H, CHEN X X, et al. Clinical characteristics and long-term recurrence of different types of parotid gland tumors[J]. Chinese Journal of General Practice, 2019, 17(5): 790-792, 796. doi: 10.16766/j.cnki.issn.1674-4152.000793
    [2]
    唐晨虎, 马东, 孙伟, 等. CT和MRI在腮腺良、恶性肿瘤鉴别诊断中的价值[J]. 中国临床医学影像杂志, 2021, 32(2): 90-93, 103. https://www.cnki.com.cn/Article/CJFDTOTAL-LYYX202102007.htm

    TANG C H, MA D, SUN W, et al. Value of CT and MRI in differential diagnosis of benign and malignant parotid gland tumors[J]. Journal of China Clinic Medical Imaging, 2021, 32(2): 90-93, 103. https://www.cnki.com.cn/Article/CJFDTOTAL-LYYX202102007.htm
    [3]
    张世坤, 王智明. 腮腺肿瘤诊断方法研究进展[J]. 中华实用诊断与治疗杂志, 2018, 32(4): 411-413. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZD201804031.htm

    ZHANG S K, WANG Z M. Progress in the diagnosis of parotid gland tumors[J]. Chinese Journal of Practical Diagnosis and Therapy, 2018, 32(4): 411-413. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZD201804031.htm
    [4]
    韩蕾, 邬小平. 磁共振成像技术在腮腺肿瘤诊断中的研究进展[J]. 磁共振成像, 2022, 13(2): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202202032.htm

    HAN L, WU X P. Research progress of magnetic resonance imaging in the diagnosis of parotid gland tumors[J]. Magnetic Resonance Imaging, 2022, 13(2): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202202032.htm
    [5]
    朱凌, 王灿, 杨功鑫, 等. 腮腺肿瘤性病变的影像学诊断思路及功能MRI价值评估[J]. 中华放射学杂志, 2022, 56(5): 587-590.

    ZHU L, WANG C, YANG G X, et al. Imaging diagnosis of parotid neoplastic lesions and evaluation of functional MRI value. [J]. Chinese Journal of Radiology, 2022, 56(5): 587-590.
    [6]
    LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42: 60-88.
    [7]
    BINCZYK F, PRAZUCH W, BOZEK P, et al. Radiomics and artificial intelligence in lung cancer screening[J]. Transl Lung Cancer Res, 2021, 10(2): 1186-1199.
    [8]
    LIBERINI V, LAUDICELLA R, BALMA M, et al. Radiomics and artificial intelligence in prostate cancer: new tools for molecular hybrid imaging and theragnostics[J]. Eur Radiol Exp, 2022, 6(1): 27.
    [9]
    LI Q, JIANG T, ZHANG C, et al. A nomogram based on clinical information, conventional ultrasound and radiomics improves prediction of malignant parotid gland lesions[J]. Cancer Lett, 2022, 527: 107-114.
    [10]
    ZHENG Y M, XU W J, HAO D P, et al. A CT-based radiomics nomogram for differentiation of lympho-associated benign and malignant lesions of the parotid gland[J]. Eur Radiol, 2021, 31(5): 2886-2895.
    [11]
    PILUDU F, MARZI S, RAVANELLI M, et al. MRI-based radiomics to differentiate between benign and malignant parotid tumors with external validation[J]. Front Oncol, 2021, 11: 656918. DOI: 10.3389/fonc.2021.656918.
    [12]
    RAJKOMAR A, DEAN J, KOHANE I. Machine learning in medicine[J]. N Engl J Med, 2019, 380(14): 1347-1358.
    [13]
    JUAN C J, HUANG T Y, LIU Y J, et al. Improving diagnosing performance for malignant parotid gland tumors using machine learning with multifeatures based on diffusion-weighted magnetic resonance imaging[J]. NMR Biomed, 2022, 35(3): e4642. DOI: 10.1002/nbm.4642.
    [14]
    YUSHKEVICH P A, PIVEN J, HAZLETT H C, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability[J]. Neuroimage, 2006, 31(3): 1116-1128.
    [15]
    VAN GRIETHUYSEN J, FEDOROV A, PARMAR C, et al. Computational radiomics system to decode the radiographic phenotype[J]. Cancer Res, 2017, 77(21): e104-e107.
    [16]
    FRIEDMAN J, HASTIE T, TIBSHIRANI R. Regularization paths for generalized linear models via coordinate descent[J]. J Stat Softw, 2010, 33(1): 1-22.
    [17]
    程顺达, 程颖, 孙士江. 基于机器学习的肿瘤智能辅助诊断方法[J]. 电子科技, 2022, 35(5): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK202205009.htm

    CHENG S D, CHENG Y, SUN S J. Intelligent auxiliary diagnosis of tumor based on machine learning[J]. Electronics Technology, 2022, 35(5): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK202205009.htm
    [18]
    杜文, 彭歆. 人工智能技术在口腔颌面部肿瘤诊断中应用的研究进展[J]. 口腔疾病防治, 2022, 30(5): 361-365. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYB202205009.htm

    DU W, PENG Q. Research progress of artificial intelligence technology in the diagnosis of oral and maxillofacial tumors[J]. Prevention and Treatment of Oral Diseases, 2022, 30(5): 361-365. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYB202205009.htm
    [19]
    冯利, 岳小飞. 9种结合式机器学习算法在肿瘤早期诊断中的准确性比较研究[J]. 医学信息学杂志, 2022, 43(5): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YXQB202205008.htm

    FENG L, YUE X F. Comparative study on the accuracy of 9 combined machine learning algorithms in early diagnosis of tumor[J]. Journal of Medical Informatics, 2022, 43(5): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YXQB202205008.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views (319) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return