Citation: | LU Wen-ting, YAO Yuan, XIONG Jing, LIU Xiang-ping, LI Shuang-qing. Effect of machine learning in the auxiliary diagnosis model of cardiovascular disease[J]. Chinese Journal of General Practice, 2023, 21(1): 112-117. doi: 10.16766/j.cnki.issn.1674-4152.002825 |
[1] |
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545. doi: 10.3969/j.issn.1000-3614.2021.06.001
Chinese Cardiovascular Health and Disease Report Compilation Group. Report on Cardiovascular Health and Diseases Burden in China: an Updated Summary of 2020[J]. Chinese Circulation Journal, 2021, 36(6): 521-545. doi: 10.3969/j.issn.1000-3614.2021.06.001
|
[2] |
王雪松, 贾婧. 人工智能引领中国医疗未来[J]. 中国机关后勤, 2021(6): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJHQ202106027.htm
WANG X S, JIA J. Ai leads the future of healthcare in China[J]. Chinese Government General Services, 2021(6): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJHQ202106027.htm
|
[3] |
王晓丽, 施天行, 彭德荣, 等. 两种机器学习算法构建老年冠心病患病风险评估模型的效能比较研究[J]. 中华全科医学, 2021, 19(4): 523-527. doi: 10.16766/j.cnki.issn.1674-4152.001852
WANG X L, SHI T X, PENG D R, et al. Comparative study on the effectiveness of two machine learning algorithms in constructing risk assessment models of coronary heart disease in the elderly[J]. Chinese Journal of General Practice, 2021, 19(4): 523-527. doi: 10.16766/j.cnki.issn.1674-4152.001852
|
[4] |
袁波, 代华, 伍佳, 等. 人工智能在全科医学领域的应用[J]. 中华全科医学, 2021, 19(9): 1433-1436, 1572. doi: 10.16766/j.cnki.issn.1674-4152.002079
YUAN B, DAI H, WU J, et al. Application of artificial intelligence applications in general practice[J]. Chinese Journal of General Practice, 2021, 19(9): 1433-1436, 1572. doi: 10.16766/j.cnki.issn.1674-4152.002079
|
[5] |
ROMITI S, VINCIGUERRA M, SAADE W, et al. Artificial intelligence (AI) and cardiovascular diseases: an unexpected alliance[J]. Cardiol Res Pract, 2020, 2020: 4972346. DOI: 10.1155/2020/4972346.
|
[6] |
GANDHI S, MOSLEH W, SHEN J, et al. Automation, machine learning, and artificial intelligence in echocardiography: a brave new world[J]. Echocardiography, 2018, 35(9): 1402-1418. doi: 10.1111/echo.14086
|
[7] |
LOPEZ-JIMENEZ F, ATTIA Z, ARRUDA-OLSON A M, et al. Artificial intelligence in cardiology: present and future[J]. Mayo Clin Proc, 2020, 95(5): 1015-1039. doi: 10.1016/j.mayocp.2020.01.038
|
[8] |
JOHNSON K W, TORRES SOTO J, GLICKSBERG B S, et al. Artificial intelligence in cardiology[J]. J Am Coll Cardiol, 2018, 71(23): 2668-2679. doi: 10.1016/j.jacc.2018.03.521
|
[9] |
KRITTANAWONG C, ZHANG H J, WANG Z, et al. Artificial intelligence in precision cardiovascular medicine[J]. J Am Coll Cardiol, 2017, 69(21): 2657-2664. doi: 10.1016/j.jacc.2017.03.571
|
[10] |
ALIZADEHSANI R, ABDAR M, ROSHANZAMIR M, et al. Machine learning-based coronary artery disease diagnosis: a comprehensive review[J]. Comput Biol Med, 2019, 111: 103346. DOI: 10.1016/j.compbiomed.2019.103346.
|
[11] |
AYATOLLAHI H, GHOLAMHOSSEINI L, SALEHI M. Predicting coronary artery disease: a comparison between two data mining algorithms[J]. BMC Public Health, 2019, 19(1): 448. doi: 10.1186/s12889-019-6721-5
|
[12] |
KIM J, KANG U, LEE Y. Statistics and deep belief network-based cardiovascular risk prediction[J]. Healthc Inform Res, 2017, 23(3): 169-175. doi: 10.4258/hir.2017.23.3.169
|
[13] |
AWAN S E, BENNAMOUN M, SOHEL F, et al. Machine learning-based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics[J]. ESC Heart Fail, 2019, 6(2): 428-435. doi: 10.1002/ehf2.12419
|
[14] |
ACHARYA U R, OH S L, HAGIWARA Y, et al. A deep convolutional neural network model to classify heartbeats[J]. Comput Biol Med, 2017, 89: 389-396. doi: 10.1016/j.compbiomed.2017.08.022
|
[15] |
SANNINO G, DE PIETRO G. A deep learning approach for ECG-based heartbeat classification for arrhythmia detection[J]. Future Gener Comput Syst, 2018, 86: 446-455. doi: 10.1016/j.future.2018.03.057
|
[16] |
HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nat Med, 2019, 25(1): 65-69. doi: 10.1038/s41591-018-0268-3
|
[17] |
KONG D D, ZHU J J, WU S S, et al. A novel IRBF-RVM model for diagnosis of atrial fibrillation[J]. Comput Methods Programs Biomed, 2019, 177: 183-192. doi: 10.1016/j.cmpb.2019.05.028
|
[18] |
AU-YEUNG W M, REINHALL P G, BARDY G H, et al. Development and validation of warning system of ventricular tachyarrhythmia in patients with heart failure with heart rate variability data[J]. PLoS One, 2018, 13(11): e0207215. DOI: 10.1371/journal.pone.0207215.
|
[19] |
ZHANG Y H, ZHANG J, BUTLER J, et al. Contemporary epidemiology, management, and outcomes of patients hospitalized for heart failure in China: results from the China Heart Failure (China-HF) registry[J]. J Card Fail, 2017, 23(12): 868-875. doi: 10.1016/j.cardfail.2017.09.014
|
[20] |
DHARMARAJAN K, RICH M W. Epidemiology, pathophysiology, and prognosis of heart failure in older adults[J]. Heart Fail Clin, 2017, 13(3): 417-426. doi: 10.1016/j.hfc.2017.02.001
|
[21] |
ATTIA Z I, KAPA S, LOPEZ-JIMENEZ F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram[J]. Nat Med, 2019, 25(1): 70-74. doi: 10.1038/s41591-018-0240-2
|
[22] |
LI B, DING S, SONG G L, et al. Computer-Aided diagnosis and clinical trials of cardiovascular diseases based on artificial intelligence technologies for risk-early warning model[J]. J Med Syst, 2019, 43(7): 228. doi: 10.1007/s10916-019-1346-x
|
[23] |
MORTAZAVI B J, DOWNING N S, BUCHOLZ E M, et al. Analysis of machine learning techniques for heart failure readmissions[J]. Circ Cardiovasc Qual Outcomes, 2016, 9(6): 629-640. doi: 10.1161/CIRCOUTCOMES.116.003039
|
[24] |
ANGRAAL S, MORTAZAVI B J, GUPTA A, et al. Machine learning prediction of mortality and hospitalization in heart failure with preserved ejection fraction[J]. JACC Heart Fail, 2020, 8(1): 12-21. doi: 10.1016/j.jchf.2019.06.013
|
[25] |
WANG W Z, JIANG B, SUN H X, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults[J]. Circulation, 2017, 135(8): 759-771. doi: 10.1161/CIRCULATIONAHA.116.025250
|
[26] |
GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017, 390(10100): 1211-1259. doi: 10.1016/S0140-6736(17)32154-2
|
[27] |
CHEN W W, GAO R L, LIU L S, et al. China cardiovascular diseases report 2015: a summary[J]. J Geriatr Cardiol, 2017, 14(1): 1-10.
|
[28] |
ZELLWEGER M J, TSIRKIN A, VASILCHENKO V, et al. A new non-invasive diagnostic tool in coronary artery disease: artificial intelligence as an essential element of predictive, preventive, and personalized medicine[J]. EPMA J, 2018, 9(3): 235-247. doi: 10.1007/s13167-018-0142-x
|
[29] |
LARROZA A, MATERKA A, LÓPEZ-LEREU M P, et al. Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging[J]. Eur J Radiol, 2017, 92: 78-83. doi: 10.1016/j.ejrad.2017.04.024
|
[30] |
ACHARYA U R, FUJITA H, OH S L, et al. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals[J]. Inf Sci, 2017, 415-416: 190-198. doi: 10.1016/j.ins.2017.06.027
|
[31] |
KWON J M, KIM K H, JEON K H, et al. Artificial intelligence algorithm for predicting mortality of patients with acute heart failure[J]. PLoS One, 2019, 14(7): e0219302. DOI: 10.1371/journal.pone.0219302.
|
[32] |
HELD E, CAPE J, TINTLE N. Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data[J]. BMC Proc, 2016, 10(Suppl 7): 141-145.
|
[33] |
AMBALE-VENKATESH B, YANG X, WU C O, et al. Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis[J]. Circ Res, 2017, 121(9): 1092-1101. doi: 10.1161/CIRCRESAHA.117.311312
|
[34] |
MASETIC Z, SUBASI A. Congestive heart failure detection using random forest classifier[J]. Comput Methods Programs Biomed, 2016, 130: 54-64. doi: 10.1016/j.cmpb.2016.03.020
|
[35] |
DILLER G P, KEMPNY A, BABU-NARAYAN S V, et al. Machine learning algorithms estimating prognosis and guiding therapy in adult congenital heart disease: data from a single tertiary centre including 10 019 patients[J]. Eur Heart J, 2019, 40(13): 1069-1077. doi: 10.1093/eurheartj/ehy915
|
[36] |
SENGUPTA P P, HUANG Y M, BANSAL M, et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy[J]. Circ Cardiovasc Imaging, 2016, 9(6): e004330. DOI: 10.1161/CIRCIMAGING.115.004330.
|
[37] |
NARULA S, SHAMEER K, SALEM OMAR A M, et al. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography[J]. J Am Coll Cardiol, 2016, 68(21): 2287-2295. doi: 10.1016/j.jacc.2016.08.062
|
[38] |
ZHANG J, GAJJALA S, AGRAWAL P, et al. Fully automated echocardiogram interpretation in clinical practice[J]. Circulation, 2018, 138(16): 1623-1635. doi: 10.1161/CIRCULATIONAHA.118.034338
|