Citation: | WANG Zi-cheng, QI Yin-liang, XU Ji-xiang, LI Wei, ZHOU Xiao-mei. Effects of hyperbaric oxygen combined with Xingnaojing injection on the consciousness improvement and serum SOD and NO in comatose patients with traumatic brain injury[J]. Chinese Journal of General Practice, 2023, 21(2): 207-209. doi: 10.16766/j.cnki.issn.1674-4152.002846 |
[1] |
KHELLAF A, KHAN D Z, HELMY A. Recent advances in traumatic brain injury[J]. J Neurol, 2019, 266(11): 2878-2889. doi: 10.1007/s00415-019-09541-4
|
[2] |
JIANG J Y, GAO G Y, FENG J F, et al. Traumatic brain injury in China[J]. Lancet Neurol, 2019, 18(3): 286-295. doi: 10.1016/S1474-4422(18)30469-1
|
[3] |
BOURGEOIS-TARDIF S, DE BEAUMONT L, RIVERA J C, et al. Role of innate inflammation in traumatic brain injury[J]. Neurol Sci, 2021, 42(4): 1287-1299. doi: 10.1007/s10072-020-05002-3
|
[4] |
DALY S, THORPE M, ROCKSWOLD S, et al. Hyperbaric oxygen therapy in the treatment of acute severe traumatic brain injury: a systematic review[J]. J Neurotrauma, 2018, 35(4): 623-629. doi: 10.1089/neu.2017.5225
|
[5] |
席峰. 醒脑静注射液在重度脑外伤中的疗效评估[J]. 世界复合医学, 2019, 5(10): 189-191. https://www.cnki.com.cn/Article/CJFDTOTAL-SJFH201910063.htm
XI F. Evaluation of curative effect of Xingnaojing Injection in severe brain trauma[J]. 世界复合医学, 2019, 5(10): 189-191. https://www.cnki.com.cn/Article/CJFDTOTAL-SJFH201910063.htm
|
[6] |
HEIM C, SCHOETTKER P, SPAHN D R. Glasgow Coma Scale in traumatic brain injury[J]. Anaesthesist, 2004, 53(12): 1245-1256. doi: 10.1007/s00101-004-0777-y
|
[7] |
GROTE S, BÖCKER W, MUTSCHLER W, et al. Diagnostic value of the Glasgow Coma Scale for traumatic brain injury in 18, 002 patients with severe multiple injuries[J]. J Neurotrauma, 2011, 28(4): 527-534. doi: 10.1089/neu.2010.1433
|
[8] |
REITH F C, VAN DEN BRANDE R, SYNNOT A, et al. The reliability of the Glasgow Coma Scale: a systematic review[J]. Intensive Care Med, 2016, 42(1): 3-15. doi: 10.1007/s00134-015-4124-3
|
[9] |
O ' LEARY R A, NICHOL A D. Pathophysiology of severe traumatic brain injury[J]. J Neurosurg Sci, 2018, 62(5): 542-548.
|
[10] |
KHATRI N, THAKUR M, PAREEK V, et al. Oxidative stress: major threat in traumatic brain injury[J]. CNS Neurol Disord Drug Targets, 2018, 17(9): 689-695. doi: 10.2174/1871527317666180627120501
|
[11] |
赵建阳, 张民, 薄红梅, 等. 中西医结合治疗急性重型颅脑损伤临床研究[J]. 中国药业, 2021, 30(20): 96-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGZ202120027.htm
ZHAO J Y, ZHANG M, BAO H M, et al. Clinical study of integrated traditional chinese and western medicine in the treatment of acute severe craniocerebral injury[J]. 中国药业, 2021, 30(20): 96-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGZ202120027.htm
|
[12] |
CHEN Y W, WANG L, YOU W J, et al. Hyperbaric oxygen therapy promotes consciousness, cognitive function, and prognosis recovery in patients following traumatic brain injury through various pathways[J]. Front Neurol, 2022, 13: 929386. DOI: 10.3389/fneur.2022.929386.
|
[13] |
KÖRPINAR Ş, UZUN H. The effects of hyperbaric oxygen at different pressures on oxidative stress and antioxidant status in rats[J]. Medicina (Kaunas), 2019, 55(5): 205. doi: 10.3390/medicina55050205
|
[14] |
SCHOTTLENDER N, GOTTFRIED I, ASHERY U. Hyperbaric oxygen treatment: effects on mitochondrial function and oxidative stress[J]. Biomolecules, 2021, 11(12): 1827. doi: 10.3390/biom11121827
|
[15] |
谢凤欣, 张东云, 府伟灵, 等. 颅脑损伤生物标志物的研究现状与未来[J]. 中华全科医学, 2020, 18(4): 638-641, 661. doi: 10.16766/j.cnki.issn.1674-4152.001318
XIE F X, ZHANG D Y, FU W L, et al. Research current and Future of biomarkers of brain injury[J]. Chinese Journal of General Practice, 2020, 18(4): 638-641, 661. doi: 10.16766/j.cnki.issn.1674-4152.001318
|
[16] |
YOUNUS H. Therapeutic potentials of superoxide dismutase[J]. Int J Health Sci (Qassim), 2018, 12(3): 88-93.
|
[17] |
WANG Y, BRANICKY R, NOẼ A, et al. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling[J]. J Cell Biol, 2018, 217(6): 1915-1928. doi: 10.1083/jcb.201708007
|
[18] |
SULHAN S, LYON K A, SHAPIRO L A, et al. Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: pathophysiology and potential therapeutic targets[J]. J Neurosci Res, 2020, 98(1): 19-28. doi: 10.1002/jnr.24331
|
[19] |
DEMIR D, KURU BEKTAŞOǦLU P, KOYUNCUOǦLU T, et al. Neuroprotective effects of mildronate in a rat model of traumatic brain injury[J]. Injury, 2019, 50(10): 1586-1592. doi: 10.1016/j.injury.2019.08.036
|
[20] |
MUBALLE K D, SEWANI-RUSIKE C R, LONGO-MBENZA B, et al. Predictors of recovery in moderate to severe traumatic brain injury[J]. J Neurosurg, 2018: 1-10. DOI: 10.3171/2018.4.JNS172185.
|
[21] |
CHE X R, FANG Y J, SI X L, et al. The role of gaseous molecules in traumatic brain injury: an updated review[J]. Front Neurosci, 2018, 12: 392. doi: 10.3389/fnins.2018.00392
|
[22] |
TENOPOULOU M, DOULIAS P T. Endothelial nitric oxide synthase-derived nitric oxide in the regulation of metabolism[J]. F1000Res, 2020, 9: F1000 Faculty Rev-1190. DOI: 10.12688/f1000research.19998.1.
|
[23] |
KAUR P, SHARMA S. Recent advances in pathophysiology of traumatic brain injury[J]. Curr Neuropharmacol, 2018, 16(8): 1224-1238. doi: 10.2174/1570159X15666170613083606
|
[24] |
MADER M M, CZORLICH P. The role of L-arginine metabolism in neurocritical care patients[J]. Neural Regen Res, 2022, 17(7): 1446-1453.
|