Citation: | XING Rong-xue, CUI Tong, TIAN Ying-xuan. Research and progress of hyperprogression after immunotherapy[J]. Chinese Journal of General Practice, 2023, 21(2): 304-308. doi: 10.16766/j.cnki.issn.1674-4152.002869 |
[1] |
CHAMPIAT S, DERCLE L, AMMARI S, et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by Anti-PD-1/PD-L1[J]. Clin Cancer Res, 2017, 23(8): 1920-1928. doi: 10.1158/1078-0432.CCR-16-1741
|
[2] |
CHUBACHI S, YASUDA H, IRIE H, et al. A case of non-small cell lung cancer with possible "disease flare" on nivolumab treatment[J]. Case Rep Oncol Med, 2016, 2016: 1075641. DOI: 10.1155/2016/1075641.
|
[3] |
CAMELLITI S, LENOCI V, BIANCHI F, et al. Mechanisms of hyperprogressive disease after immune checkpoint inhibitor therapy: What we (don' t) know[J]. J Exp Clin Cancer Res, 2020, 39(1): 236. doi: 10.1186/s13046-020-01721-9
|
[4] |
FERTÉ C, FERNANDEZ M, HOLLEBECQUE A, et al. Tumor growth rate is an early indicator of antitumor drug activity in phase Ⅰ clinical trials[J]. Clin Cancer Res, 2014, 20(1): 246-252. FERTÉ C, FERNANDEZ M, HOLLEBECQUE A, et al. Tumor growth rate is an early indicator of antitumor drug activity in phase Ⅰ clinical trials[J]. Clin Cancer Res, 2014, 20(1): 246-252. doi: 10.1158/1078-0432.CCR-13-2098
|
[5] |
FERRARA R, MEZQUITA L, TEXIER M, et al. Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy[J]. JAMA Oncol, 2018, 4(11): 1543-1552. doi: 10.1001/jamaoncol.2018.3676
|
[6] |
SAÃDA-BOUZID E, DEFAUCHEUX C, KARABAJAKIAN A, et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma[J]. Ann Oncol, 2017, 28(7): 1605-1611. doi: 10.1093/annonc/mdx178
|
[7] |
CHAMPIAT S, FERRARA R, MASSARD C, et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management[J]. Nat Rev Clin Oncol, 2018, 15(12): 748-762. doi: 10.1038/s41571-018-0111-2
|
[8] |
KATO S, GOODMAN A, WALAVALKAR V, et al. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate[J]. Clin Cancer Res, 2017, 23(15): 4242-4250. doi: 10.1158/1078-0432.CCR-16-3133
|
[9] |
ZHANG H C, FANG X F, LI D, et al. Hyperprogressive disease in patients receiving immune checkpoint inhibitors[J]. Curr Probl Cancer, 2021, 45(3): 100688. DOI: 10.1016/j.currproblcancer.2020.100688.
|
[10] |
KIM C G, KIM K H, PYO K H, et al. Hyperprogressive disease during PD-1/PD-L1 blockade in patients with non-small-cell lung cancer[J]. Ann Oncol, 2019, 30(7): 1104-1113. doi: 10.1093/annonc/mdz123
|
[11] |
SOLAYMANI-MOHAMMADI S, LAKHDARI O, MINEV I, et al. Lack of the programmed death-1 receptor renders host susceptible to enteric microbial infection through impairing the production of the mucosal natural killer cell effector molecules[J]. J Leukoc Biol, 2016, 99(3): 475-482. doi: 10.1189/jlb.4A0115-003RR
|
[12] |
LAMICHHANE P, KARYAMPUDI L, SHREEDER B, et al. IL10 release upon PD-1 blockade sustains immunosuppression in ovarian cancer[J]. Cancer Res, 2017, 77(23): 6667-6678. doi: 10.1158/0008-5472.CAN-17-0740
|
[13] |
KARYAMPUDI L, LAMICHHANE P, KREMPSKI J, et al. PD-1 blunts the function of ovarian tumor-infiltrating dendritic cells by inactivating NF-κB[J]. Cancer Res, 2016, 76(2): 239-250. doi: 10.1158/0008-5472.CAN-15-0748
|
[14] |
KREMPSKI J, KARYAMPUDI L, BEHRENS M D, et al. Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer[J]. J Immunol, 2011, 186(12): 6905-6913. doi: 10.4049/jimmunol.1100274
|
[15] |
XIA Q, WEI L, ZHANG Y T, et al. Immune checkpoint receptors Tim-3 and PD-1 regulate monocyte and T lymphocyte function in septic patients[J]. Mediators Inflamm, 2018, 2018: 1632902. DOI: 10.1155/2018/1632902.
|
[16] |
SAID E A, DUPUY F P, TRAUTMANN L, et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection[J]. Nat Med, 2010, 16(4): 452-459. doi: 10.1038/nm.2106
|
[17] |
GALLI S J, BORREGAARD N, WYNN T A. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils[J]. Nat Immunol, 2011, 12(11): 1035-1044. doi: 10.1038/ni.2109
|
[18] |
HUANG R Y, FRANCOIS A, MCGRAY A R, et al. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer[J]. Oncoimmunology, 2016, 6(1): e1249561. DOI: 10.1080/2162402X.2016.1249561.
|
[19] |
KAWAKAMI Y, OHTA S, SAYEM M A, et al. Immune-resistant mechanisms in cancer immunotherapy[J]. Int J Clin Oncol, 2020, 25(5): 810-817. doi: 10.1007/s10147-019-01611-x
|
[20] |
SHI H B, LAN J, YANG J Q. Mechanisms of resistance to checkpoint blockade therapy[J]. Adv Exp Med Biol, 2020, 1248: 83-117.
|
[21] |
KOYAMA S, AKBAY E A, LI Y Y, et al. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment[J]. Cancer Res, 2016, 76(5): 999-1008. doi: 10.1158/0008-5472.CAN-15-1439
|
[22] |
郑冠群, 赵福友, 吴穷, 等. PD-1及其配体在骨肉瘤免疫治疗中的研究进展[J]. 中华全科医学, 2016, 14(9): 1560-1562. doi: 10.16766/j.cnki.issn.1674-4152.2016.09.042
ZHENG G Q, ZHAO F Y, WU Q, et al. Research progress of PD-1 and its ligands in immunotherapy of osteosarcoma[J]. Chinese Journal of General Practice, 2016, 14(9): 1560-1562. doi: 10.16766/j.cnki.issn.1674-4152.2016.09.042
|
[23] |
TOGASHI Y, SHITARA K, NISHIKAWA H. Regulatory T cells in cancer immunosuppression -implications for anticancer therapy[J]. Nat Rev Clin Oncol, 2019, 16(6): 356-371. doi: 10.1038/s41571-019-0175-7
|
[24] |
KAMADA T, TOGASHI Y, TAY C, et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer[J]. Proc Natl Acad Sci U S A, 2019, 116(20): 9999-10008. doi: 10.1073/pnas.1822001116
|
[25] |
ZAPPASODI R, BUDHU S, HELLMANN M D, et al. Non-conventional inhibitory CD4+Foxp3-PD-1hi T cells as a biomarker of immune checkpoint blockade activity[J]. Cancer Cell, 2018, 33(6): 1017-1032. doi: 10.1016/j.ccell.2018.05.009
|
[26] |
ANGELICOLA S, RUZZI F, LANDUZZI L, et al. IFN-gamma and CD38 in hyperprogressive cancer development[J]. Cancers(Basel), 2021, 13(2): 309.
|
[27] |
MANGUSO R T, POPE H W, ZIMMER M D, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target[J]. Nature, 2017, 547(7664): 413-418. doi: 10.1038/nature23270
|
[28] |
ZARETSKY J M, GARCIA-DIAZ A, SHIN D S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma[J]. N Engl J Med, 2016, 375(9): 819-829. doi: 10.1056/NEJMoa1604958
|
[29] |
KALBASI A, RIBAS A. Tumour-intrinsic resistance to immune checkpoint blockade[J]. Nat Rev Immunol, 2020, 20(1): 25-39. doi: 10.1038/s41577-019-0218-4
|
[30] |
MALAVASI F, DEAGLIO S, FUNARO A, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology[J]. Physiol Rev, 2008, 88(3): 841-886. doi: 10.1152/physrev.00035.2007
|
[31] |
HOGAN K A, CHINI C, CHINI E N. The multi-faceted ecto-enzyme CD38: roles in immunomodulation, cancer, aging, and metabolic diseases[J]. Front Immunol, 2019, 10: 1187. doi: 10.3389/fimmu.2019.01187
|
[32] |
GALLDIKS N, KOCHER M, LANGEN K J. Pseudoprogression after glioma therapy: an update[J]. Expert Rev Neurother, 2017, 17(11): 1109-1115. doi: 10.1080/14737175.2017.1375405
|
[33] |
WOLCHOK J D, SAENGER Y. The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation[J]. Oncologist, 2008, 13: 2-9. doi: 10.1634/theoncologist.13-S4-2
|
[34] |
CHIOU V L, BUROTTO M. Pseudoprogression and immune-related response in solid tumors[J]. J Clin Oncol, 2015, 33(31): 3541-3543. doi: 10.1200/JCO.2015.61.6870
|
[35] |
WANG Q H, GAO J Z, WU X. Pseudoprogression and hyperprogression after checkpoint blockade[J]. Int Immunopharmacol, 2018, 58: 125-135. doi: 10.1016/j.intimp.2018.03.018
|
[36] |
FRELAUT M, DU RUSQUEC P, DE MOURA A, et al. Pseudoprogression and hyperprogression as new forms of response to immunotherapy[J]. BioDrugs, 2020, 34(4): 463-476. doi: 10.1007/s40259-020-00425-y
|
[37] |
CHAE Y K, WANG S, NIMEIRI H, et al. Pseudoprogression in microsatellite instability-high colorectal cancer during treatment with combination T cell mediated immunotherapy: a case report and literature review[J]. Oncotarget, 2017, 8(34): 57889-57897. doi: 10.18632/oncotarget.18361
|
[38] |
TANIZAKI J, HAYASHI H, KIMURA M, et al. Report of two cases of pseudoprogression in patients with non-small cell lung cancer treated with nivolumab-including histological analysis of one case after tumor regression[J]. Lung Cancer, 2016, 102: 44-48. doi: 10.1016/j.lungcan.2016.10.014
|
[39] |
中华医学会核医学分会PET学组. 免疫检查点抑制剂治疗恶性肿瘤的PET/CT评价专家共识(2020版)[J]. 中华肿瘤杂志, 2020, 42(9): 697-705. doi: 10.3760/cma.j.cn112152-20200623-00590
PET Group of Nuclear Medicine Society of Chinese Medical Association. Expert consensus on assessing tumor response to immune checkpoint inhibitors by PET/CT (2020 Edition)[J]. Chinese Journal of Oncology, 2020, 42(9): 697-705. doi: 10.3760/cma.j.cn112152-20200623-00590
|
[40] |
AIDE N, HICKS R J, LE TOURNEAU C, et al. FDG PET/CT for assessing tumour response to immunotherapy: report on the EANM symposium on immune modulation and recent review of the literature[J]. Eur J Nucl Med Mol Imaging, 2019, 46(1): 238-250. doi: 10.1007/s00259-018-4171-4
|
[41] |
WEISS G J, BECK J, BRAUN D P, et al. Tumor Cell-Free DNA copy number instability predicts therapeutic response to immunotherapy[J]. Clin Cancer Res, 2017, 23(17): 5074-5081. doi: 10.1158/1078-0432.CCR-17-0231
|