Citation: | XIA Wenguang, ZHANG Hao, WEI Chuanxiong, Ali Haider, BI Jinzhe, ZENG Jiangzheng. Bioinformatics analysis of the competing endogenous RNA network associated with papillary thyroid carcinoma[J]. Chinese Journal of General Practice, 2023, 21(4): 693-697. doi: 10.16766/j.cnki.issn.1674-4152.002962 |
[1] |
DU L, WANG Y, SUN X, et al. Thyroid cancer: trends in incidence, mortality and clinical-pathological patterns in Zhejiang Province, Southeast China[J]. BMC Cancer, 2018, 18(1): 291. doi: 10.1186/s12885-018-4081-7
|
[2] |
周溪, 沈严严. 超声及血清学指标诊断甲状腺结节的研究进展[J]. 现代医药卫生, 2020, 36(9): 1334-1337. https://www.cnki.com.cn/Article/CJFDTOTAL-XYWS202009016.htm
ZHOU X, SHEN Y Y. Progress in diagnosis of thyroid nodules by Ultrasonography and Serological Indexes[J]. Journal of Modern Medicine & Health, 2020, 36(9): 1334-1337. https://www.cnki.com.cn/Article/CJFDTOTAL-XYWS202009016.htm
|
[3] |
SEIB C D, SOSA J A. Evolving Understanding of the Epidemiology of Thyroid Cancer[J]. Endocrinol Metab Clin North Am, 2019, 48(1): 23-35. doi: 10.1016/j.ecl.2018.10.002
|
[4] |
SHUKLA N, OSAZUWA-PETERS N, MEGWALU U C. Association between age and nodal metastasis in papillary thyroid carcinoma[J]. Otolaryngol Head Neck Surg, 2021, 165(1): 43-49. doi: 10.1177/0194599820966995
|
[5] |
LU Y, JIANG L, CHEN C, et al. Clinicopathologic characteristics and outcomes of papillary thyroid carcinoma in younger patients[J]. Medicine (Baltimore), 2020, 99(15): e19795. DOI: 10.1097/MD.0000000000019795.
|
[6] |
郑媛媛, 李伟, 陈余清. 环状RNA与肿瘤相关性研究进展[J]. 中华全科医学, 2019, 17(7): 1181-1185. doi: 10.16766/j.cnki.issn.1674-4152.000896
ZHENG Y Y, LI W, CHEN Y Q. Research progress on the correlation between circRNAs and tumors[J]. Chinese Journal of General Practice, 2019, 17(7): 1181-1185. doi: 10.16766/j.cnki.issn.1674-4152.000896
|
[7] |
FAN J, RENY Y, XU W, et al. The prognostic and predictive significance of circRNA CDR1as in tumor progression[J]. Front Oncol, 2020, 10: 549982. DOI: 10.3389/fonc.2020.549982.
|
[8] |
TANG Q, HANN S S. Biological roles and mechanisms of circular RNA in human cancers[J]. Onco Targets Ther, 2020, 13: 2067-2092. doi: 10.2147/OTT.S233672
|
[9] |
LIU L, LIU F B, HUANG M, et al. Circular RNA ciRS-7 promotes the proliferation and metastasis of pancreatic cancer by regulating miR-7-mediated EGFR/STAT3 signaling pathway[J]. Hepatobiliary Pancreat Dis Int, 2019, 18(6): 580-586. doi: 10.1016/j.hbpd.2019.03.003
|
[10] |
HUANG H W, CHANG C C, WANG C S, et al. Association between Inflammation and Function of Cell Adhesion Molecules Influence on Gastrointestinal Cancer Development[J]. Cells, 2021, 10(1): 67. DOI: 10.3390/cells10010067.
|
[11] |
CHEN L L. The expanding regulatory mechanisms and cellular functions of circular RNAs[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 475-490. doi: 10.1038/s41580-020-0243-y
|
[12] |
SHANG A Q, GU C Z, WANG W W, et al. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p- TGF-β1 axis[J]. Mol Cancer, 2020, 19(1): 117. doi: 10.1186/s12943-020-01235-0
|
[13] |
WONG C H, LOU U K, LI Y, et al. CircFOXK2 promotes growth and metastasis of pancreatic ductal adenocarcinoma by complexing with RNA-binding proteins and sponging MiR-942[J]. Cancer Res, 2020, 80(11): 2138-2149. doi: 10.1158/0008-5472.CAN-19-3268
|
[14] |
LI X, LIU C X X, XUE W, et al. Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection[J]. Mol Cell, 2017, 67(2): 214-227. e7. doi: 10.1016/j.molcel.2017.05.023
|
[15] |
ZHANG M L, HUANG N N, YANG X S, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis[J]. Oncogene, 2018, 37(13): 1805-1814. doi: 10.1038/s41388-017-0019-9
|
[16] |
KRISTENSEN L S, ANDERSEN M S, STAGSTED L V W, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691. doi: 10.1038/s41576-019-0158-7
|
[17] |
WU G J, ZHOU W H, PAN X H, et al. Circular RNA profiling reveals exosomal circ_0006156 as a novel biomarker in papillary thyroid cancer[J]. Mol Ther Nucleic Acids, 2020, 19: 1134-1144. doi: 10.1016/j.omtn.2019.12.025
|
[18] |
ZHANG W, LIU T, LI T S, et al. Hsa_circRNA_102002 facilitates metastasis of papillary thyroid cancer through regulating miR-488-3p/HAS2 axis[J]. Cancer Gene Ther, 2021, 28(3-4): 279-293. doi: 10.1038/s41417-020-00218-z
|
[19] |
TAMMI M I, OIKARI S, PASONEN-SEPPÄNEN S, et al. Activated hyaluronan metabolism in the tumor matrix - causes and consequences[J]. Matrix Biol, 2019, 78-79: 147-164. doi: 10.1016/j.matbio.2018.04.012
|
[20] |
KIM Y H, LEE S B, SHIM S, et al. Hyaluronic acid synthase 2 promotes malignant phenotypes of colorectal cancer cells through transforming growth factor beta signaling[J]. Cancer Sci, 2019, 110(7): 2226-2236. doi: 10.1111/cas.14070
|
[21] |
KOLLIOPOULOS C, LIN C Y, HELDIN C H, et al. Has2 natural antisense RNA and Hmga2 promote Has2 expression during TGFβ-induced EMT in breast cancer[J]. Matrix Biol, 2019, 80: 29-45. doi: 10.1016/j.matbio.2018.09.002
|
[22] |
Yang Y, Zhang Y, Ding X, et al. Construction and analysis of the ceRNA network hsa_circ_0031968/miR-3611/GCG in lung adenocarcinoma[J]. Ann Transl Med, 2021, 9(24): 1757. doi: 10.21037/atm-21-5854
|
[23] |
D'ADAMO M C, LIANTONIO A, ROLLAND J F, et al. Kv1.1 channelopathies: pathophysiological mechanisms and therapeutic approaches[J]. Int J Mol Sci, 2020, 21(8): 2935. doi: 10.3390/ijms21082935
|
[24] |
UHAN S, ZIDAR N, TOMAŽIĈ A, et al. Hypermethylated promoters of genes UNC5D and KCNA1 as potential novel diagnostic biomarkers in colorectal cancer[J]. Epigenomics, 2020, 12(19): 1677-1688. doi: 10.2217/epi-2020-0118
|
[25] |
YANG J A, YANG Q. Identification of core genes and screening of potential targets in glioblastoma multiforme by integrated bioinformatic analysis[J]. Front Oncol, 2020, 10: 615976. DOI: 10.3389/fonc.2020.615976.
|
[26] |
LIU L, CHEN Y M, ZHANG Q Y, et al. Silencing of KCNA1 suppresses the cervical cancer development via mitochondria damage[J]. Channels (Austin), 2019, 13(1): 321-330. doi: 10.1080/19336950.2019.1648627
|
[27] |
YU Q, WANG X J, YANG Y H, et al. Upregulated NLGN1 predicts poor survival in colorectal cancer[J]. BMC Cancer, 2021, 21(1): 884. doi: 10.1186/s12885-021-08621-x
|
[28] |
BIZZOZERO L, PERGOLIZZI M, PASCAL D, et al. Tumoral neuroligin 1 promotes cancer-nerve interactions and synergizes with the glial cell line-derived neurotrophic factor[J]. Cells, 2022, 11(2): 280. DOI: 10.3390/cells11020280.
|