Citation: | WANG Yanan, DAI Qianqian, RU Liang. The changes and clinical significance of serum Rac1 levels in children with bronchial asthma[J]. Chinese Journal of General Practice, 2023, 21(5): 736-739. doi: 10.16766/j.cnki.issn.1674-4152.002971 |
[1] |
徐莉莉, 张军, 尚璐璐, 等. N-乙酰半胱氨酸对哮喘小鼠模型气道炎症和氧化应激的影响[J]. 江苏大学学报: 医学版, 2021, 31(1): 56-60. doi: 10.3969/j.issn.1671-7775.2021.01.009
XU L L, ZHANG J, SHANG L L, et al. Effect of N-acetylcysteine on airway inflammation and oxidative stress in asthmatic mice[J]. J Jiangsu Univ Med Ed, 2021, 31(1): 56-60. doi: 10.3969/j.issn.1671-7775.2021.01.009
|
[2] |
王若熹, 韩利红. 肺功能和血浆IL-5及IL-8在不同表型哮喘间的差异性分析及风险预测[J]. 江苏大学学报: 医学版, 2021, 31(6): 511-516. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYZ202106010.htm
WANG RX, HAN LH. Difference analysis and risk prediction of pulmonary function and plasma IL-5 and IL-8 in different phenotypes of asthma[J]. J Jiangsu Univ Med Ed, 2021, 31(6): 511-516. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYZ202106010.htm
|
[3] |
SAKAI H, KAI Y, SATO K, et al. Rac1 modulates G-protein-coupled receptor-induced bronchial smooth muscle contraction[J]. Eur J Pharmacol, 2018, 818: 74-83. doi: 10.1016/j.ejphar.2017.10.032
|
[4] |
杨国建, 李敏. 1, 25二羟维生素D3对哮喘小鼠的Rac1-IL33-ILC2通路的作用[J]. 实用医院临床杂志, 2021, 18(1): 1-3. doi: 10.3969/j.issn.1672-6170.2021.01.001
YANG G J, LI M. 1, 25 The effect of dihydroxyvitamin D3 on Rac1-IL33-ILC2 pathway in asthmatic mice[J]. J Pract Hosp, 2021, 18(1): 1-3. doi: 10.3969/j.issn.1672-6170.2021.01.001
|
[5] |
周新, 张旻. 中国支气管哮喘防治指南(2020年版)解读[J]. 诊断学理论与实践, 2021, 20(2): 138-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDLS202102004.htm
ZHOU X, ZHANG M. Interpretation of the Chinese guidelines for the prevention and treatment of bronchial asthma (2020 edition)[J]. Diagn Theory Pract, 2021, 20(2): 138-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDLS202102004.htm
|
[6] |
CHETTA A, CALZETTA L. Bronchial asthma: an update[J]. Minerva Med, 2022, 113(1): 1-3.
|
[7] |
ZHANG J, ZHAO L, ZHAO D, et al. Reliability and validity of the Chinese version of the test for respiratory and asthma control in kids (TRACK) in preschool children with asthma: a prospective validation study[J]. BMJ Open, 2019, 9(8): e025378. DOI: 10.1136/bmjopen-2018-025378.
|
[8] |
张妍琦, 李鑫, 孙璐, 等. 布地格福吸入气雾剂治疗中、重度支气管哮喘患者的临床研究[J]. 中国临床药理学杂志, 2022, 38(1): 3-5, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-GLYZ202201001.htm
ZHANG Y Q, LI X, SUN L, et al. Clinical study of budesonide inhalation aerosol in the treatment of patients with moderate and severe bronchial asthma[J]. Chinese J Clin Pharmacol, 2022, 38(1): 3-5, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-GLYZ202201001.htm
|
[9] |
GAO X G, JI C L, WANG J Q, et al. Maduramicin induces cardiotoxicity via Rac1 signaling-independent methuosis in H9c2 cells[J]. J Appl Toxicol, 2021, 41(12): 1937-1951. doi: 10.1002/jat.4175
|
[10] |
秦丹凤, 胡晓峰, 陈庆青, 等. 哮喘患者血清Rac1表达水平及其与气道炎症相关性分析[J]. 临床军医杂志, 2022, 50(1): 75-77. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGZ202201023.htm
QIN D F, HU X F, CHEN Q Q, et al. Expression level of Rac1 in serum of asthmatic patients and its correlation with airway inflammation[J]. J Clin Mil Med, 2022, 50(1): 75-77. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGZ202201023.htm
|
[11] |
WAN J, CAO Y W, ABDELAZIZ M H, et al. Downregulated Rac1 promotes apoptosis and inhibits the clearance of apoptotic cells in airway epithelial cells, which may be associated with airway hyper-responsiveness in asthma[J]. Scand J Immunol, 2019, 89(5): e12752. DOI: 10.1111/sji.12752.
|
[12] |
KAI Y, MOTEGI M, SUZUKI Y, et al. Up-regulation of Rac1 in the bronchial smooth muscle of murine experimental asthma[J]. Basic Clin Pharmacol Toxicol, 2019, 125(1): 8-15. doi: 10.1111/bcpt.13204
|
[13] |
DILASSER F, ROSE L, HASSOUN D, et al. Essential role of smooth muscle Rac1 in severe asthma-associated airway remodelling[J]. Thorax, 2021, 76(4): 326-334. doi: 10.1136/thoraxjnl-2020-216271
|
[14] |
ZENG S L, CUI J, ZHANG Y T, et al. MicroRNA-98-5p inhibits IL-13-induced proliferation and migration of human airway smooth muscle cells by targeting RAC1[J]. Inflammation, 2022, 45(4): 1548-1558. doi: 10.1007/s10753-022-01640-1
|
[15] |
KUNC P, FABRY J, LUCANSKA M, et al. Biomarkers of bronchial asthma[J]. Physiol Res, 2020, 69(Suppl 1): S29-S34.
|
[16] |
PEEBLES R S, ARONICA M A. Proinflammatory pathways in the pathogenesis of asthma[J]. Clin Chest Med, 2019, 40(1): 29-50.
|
[17] |
MURDACA G, GRECO M, TONACCI A, et al. IL-33/IL-31 axis in immune-mediated and allergic diseases[J]. Int J Mol Sci, 2019, 20(23): 5856.
|
[18] |
缪晔红, 沈莹莹, 魏源, 等. FeNO、外周血EOS计数及血清总IgE对支气管哮喘的联合诊断价值探讨[J]. 国际呼吸杂志, 2022, 42(8): 583-588.
MIAO Y H, SHEN Y Y, WEI Y, et al. Study on the combined diagnostic value of FeNO, peripheral blood EOS count and serum total IgE in bronchial asthma[J]. Internation J Respir Sci, 2022, 42(8): 583-588.
|
[19] |
TOKI S, GOLENIEWSKA K, ZHANG J, et al. TSLP and IL-33 reciprocally promote each other ' s lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation[J]. Allergy, 2020, 75(7): 1606-1617.
|
[20] |
LOH Z, SIMPSON J, ULLAH A, et al. HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscle remodelling[J]. PLoS Pathog, 2020, 16(7): e1008651. DOI: 10.1371/journal.ppat.1008651.
|