Citation: | ZHANG Mingdong, LU Zhexin, GU Hongbing, FAN Yongliang, YE Yizhou. Research progress on T cells in aortic valve calcification[J]. Chinese Journal of General Practice, 2023, 21(5): 853-856. doi: 10.16766/j.cnki.issn.1674-4152.002999 |
[1] |
PEETERS F, MEEX S J R, DWECK M R, et al. Calcific aortic valve stenosis: hard disease in the heart: a biomolecular approach towards diagnosis and treatment[J]. Eur Heart J, 2018, 39(28): 2618-2624. doi: 10.1093/eurheartj/ehx653
|
[2] |
CURINI L, ALUSHI B, CHRISTOPHER M R, et al. The first taxonomic and functional characterization of human CAVD-associated microbiota[J]. Microb Cell, 2023, 10(2): 36-48. doi: 10.15698/mic2023.02.791
|
[3] |
RADDATZ M A, MADHUR M S, MERRYMAN W D. Adaptive immune cells in calcific aortic valve disease[J]. Am J Physiol Heart Circ Physiol, 2019, 317(1): H141-H155. doi: 10.1152/ajpheart.00100.2019
|
[4] |
WANG D H, XIONG T H, YU W L, et al. Predicting the key genes involved in aortic valve calcification through integrated bioinformatics analysis[J]. Front Genet, 2021, 12: 650213. DOI: 10.3389/fgene.2021.650213.
|
[5] |
GOLSTEIN P, GRIFFITHS G M. An early history of T cell-mediated cytotoxicity[J]. Nat Rev Immunol, 2018, 18(8): 527-535. doi: 10.1038/s41577-018-0009-3
|
[6] |
PASSOS L S A, JHA P K, BECKER-GREENE D, et al. Prothymosin Alpha: a novel contributor to estradiol receptor alpha-mediated CD8(+) T-cell pathogenic responses and recognition of Type 1 collagen in rheumatic heart valve disease[J]. Circulation, 2022, 145(7): 531-548. doi: 10.1161/CIRCULATIONAHA.121.057301
|
[7] |
NAGY E, LEI Y, MARTíNEZ-MARTíNEZ E, et al. Interferon-γ released by activated CD8(+) T lymphocytes impairs the calcium resorption potential of osteoclasts in calcified human aortic valves[J]. Am J Pathol, 2017, 187(6): 1413-1425. doi: 10.1016/j.ajpath.2017.02.012
|
[8] |
ÉVA SIKURA K, COMBI Z, POTOR L, et al. Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization[J]. J Adv Res, 2021, 27: 165-176. doi: 10.1016/j.jare.2020.07.005
|
[9] |
GRIM J C, AGUADO B A, VOGT B J, et al. Secreted Factors from proinflammatory macrophages promote an osteoblast-like phenotype in valvular interstitial cells[J]. Arterioscler Thromb Vasc Biol, 2020, 40(11): e296-e308.
|
[10] |
WU G F, NIE W B, WANG Q, et al. Umbelliferone ameliorates complete freund adjuvant-induced arthritis via reduction of NF-κB signaling pathway in osteoclast differentiation[J]. Inflammation, 2021, 44(4): 1315-1329. doi: 10.1007/s10753-021-01418-x
|
[11] |
HE Y B, GUO J H, WANG C, et al. IL-33 promotes the progression of nonrheumatic aortic valve stenosis via inducing differential phenotypic transition in valvular interstitial cells[J]. J Cardiol, 2020, 75(2): 124-133. doi: 10.1016/j.jjcc.2019.06.011
|
[12] |
MERINO-MERINO A, GONZALEZ-BERNAL J, FERNANDEZ-ZOPPINO D, et al. The role of Galectin-3 and ST2 in cardiology: a short review[J]. Biomolecules, 2021, 11(8): 1167. doi: 10.3390/biom11081167
|
[13] |
SCHNITZLER J G, ALI L, GROENEN A G, et al. Lipoprotein(a) as orchestrator of calcific aortic valve stenosis[J]. Biomolecules, 2019, 9(12): 760. doi: 10.3390/biom9120760
|
[14] |
CHEN X, WANG Z Q, DUAN N, et al. Osteoblast-osteoclast interactions[J]. Connect Tissue Res, 2018, 59(2): 99-107. doi: 10.1080/03008207.2017.1290085
|
[15] |
ALLAM G, ABDEL-MONEIM A, GABER A M. The pleiotropic role of interleukin-17 in atherosclerosis[J]. Biomed Pharmacother, 2018, 106: 1412-1418. doi: 10.1016/j.biopha.2018.07.110
|
[16] |
LJUNGBERG J, JANIEC M, BERGDAHL I A, et al. Proteomic biomarkers for incident aortic stenosis requiring valvular replacement[J]. Circulation, 2018, 138(6): 590-599. doi: 10.1161/CIRCULATIONAHA.117.030414
|
[17] |
LIU Z T, WANG Y X, SHI J W, et al. IL-21 promotes osteoblastic differentiation of human valvular interstitial cells through the JAK3/STAT3 pathway[J]. Int J Med Sci, 2020, 17(18): 3065-3072. doi: 10.7150/ijms.49533
|
[18] |
SAIGUSA R, WINKELS H, LEY K. T cell subsets and functions in atherosclerosis[J]. Nat Rev Cardiol, 2020, 17(7): 387-401. doi: 10.1038/s41569-020-0352-5
|
[19] |
MUNJAL A, KHANDIA R. Atherosclerosis: orchestrating cells and biomolecules involved in its activation and inhibition[J]. Adv Protein Chem Struct Biol, 2020, 120: 85-122. http://www.xueshufan.com/publication/2996257806
|
[20] |
CROTTY S. T follicular helper cell biology: a decade of discovery and diseases[J]. Immunity, 2019, 50(5): 1132-1148. doi: 10.1016/j.immuni.2019.04.011
|
[21] |
GADDIS D E, PADGETT L E, WU R P, et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis[J]. Nat Commun, 2018, 9(1): 1095. doi: 10.1038/s41467-018-03493-5
|
[22] |
TAY C, LIU Y H, KANELLAKIS P, et al. Follicular B cells promote atherosclerosis via T cell-mediated differentiation into plasma cells and secreting pathogenic immunoglobulin g[J]. Arterioscler Thromb Vasc Biol, 2018, 38(5): e71-e84.
|
[23] |
SAITO T. Molecular dynamics of co-signal molecules in T-Cell activation[J]. Adv Exp Med Biol, 2019, 1189: 135-152.
|
[24] |
余筱燕, 汤珂珂, 吕迪. 阻滞Kv1.3通道抑制CD4+ CD28(null) T细胞活性缓解糖尿病微血管损伤的实验研究[J]. 中华全科医学, 2019, 17(8): 1335-1339, 1412. doi: 10.16766/j.cnki.issn.1674-4152.000937
YU X Y, TANG K K, LYU D. Inhibit the activity of CD4+ CD28null T cells to alleviate diabetic microvascular damage by blocking Kv1.3 channel[J]. Chinese Journal of General Practice, 2019, 17(8): 1335-1339, 1412. doi: 10.16766/j.cnki.issn.1674-4152.000937
|
[25] |
BROADLEY I, PERA A, MORROW G, et al. Expansions of Cytotoxic CD4+CD28- T cells drive excess cardiovascular mortality in rheumatoid arthritis and other chronic inflammatory conditions and are triggered by CMV infection[J]. Front Immunol, 2017, 8: 195.
|
[26] |
VAN LAECKE S, MALFAIT T, SCHEPERS E, et al. Cardiovascular disease after transplantation: an emerging role of the immune system[J]. Transpl Int, 2018, 31(7): 689-699. doi: 10.1111/tri.13160
|
[27] |
LEE S, BARTLETT B, DWIVEDI G. Adaptive immune responses in human atherosclerosis[J]. Int J Mol Sci, 2020, 21(23): 9322. doi: 10.3390/ijms21239322
|
[28] |
FU Y, LIN Q, ZHANG Z R, et al. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity[J]. Acta Pharm Sin B, 2020, 10(3): 414-433. doi: 10.1016/j.apsb.2019.08.010
|
[29] |
DUAN Y Y, TANG H Y, MITCHELL-SILBAUGH K, et al. Heat shock protein 60 in cardiovascular physiology and diseases[J]. Front Mol Biosci, 2020, 7: 73. doi: 10.3389/fmolb.2020.00073
|
[30] |
ABEL A M, YANG C, THAKAR M S, et al. Natural killer cells: development, maturation, and clinical utilization[J]. Front Immunol, 2018, 9: 1869. doi: 10.3389/fimmu.2018.01869
|
[31] |
MAZUR P, MIELIMONKA A, NATORSKA J, et al. Lymphocyte and monocyte subpopulations in severe aortic stenosis at the time of surgical intervention[J]. Cardiovasc Pathol, 2018, 35: 1-7. doi: 10.1016/j.carpath.2018.03.004
|
[32] |
BLASER M C, KRALER S, LVSCHER T F, et al. Multi-Omics approaches to define calcific aortic valve disease pathogenesis[J]. Circ Res, 2021, 128(9): 1371-1397. doi: 10.1161/CIRCRESAHA.120.317979
|
[33] |
SHARMA N, TOOR D. Interleukin-10: role in increasing susceptibility and pathogenesis of rheumatic fever/rheumatic heart disease[J]. Cytokine, 2017, 90: 169-176. doi: 10.1016/j.cyto.2016.11.010
|