Citation: | LIU Rui, LU Yan, JIA Yongping, MA Yichao. Exercise induced cardioprotective effects and related molecular mechanisms[J]. Chinese Journal of General Practice, 2023, 21(6): 1021-1025. doi: 10.16766/j.cnki.issn.1674-4152.003040 |
[1] |
LAVIE C J, OZEMEK C, CARBONE S, et al. Sedentary behavior, exercise, and cardiovascular health[J]. Circ Res, 2019, 124(5): 799-815. doi: 10.1161/CIRCRESAHA.118.312669
|
[2] |
陈凌云, 秦琼, 王丽娟, 等. 分级运动康复训练在慢性心力衰竭患者的临床应用效果[J]. 中华全科医学, 2022, 20(8): 1339-1342. doi: 10.16766/j.cnki.issn.1674-4152.002591
CHEN L Y, QIN Q, WANG L J, et al. Clinical application effect study of graded exercise rehabilitation training in patients with chronic heart failure[J]. Chinese Journal of General Practice, 2022, 20(8): 1339-1342. doi: 10.16766/j.cnki.issn.1674-4152.002591
|
[3] |
汪蕾, 蔡濛, 邓晓惠, 等. 心肺康复运动对老年急性心肌梗死患者经皮冠状动脉介入术后心肺功能及心脏舒张功能的影响[J]. 中国医药, 2021, 16(3): 321-325. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYG202103001.htm
WANG L, CAI M, DENG X H, et al. Effects of cardiopulmonary rehabilitation exercise on cardiopulmonary function and diastolic function in elderly patients with acute myocardial infarction after percutaneous coronary intervention[J]. China Medicine, 2021, 16(3): 321-325. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYG202103001.htm
|
[4] |
SCHVTTLER D, CLAUSS S, WECKBACH L T, et al. Molecular mechanisms of cardiac remodeling and regeneration in physical exercise[J]. Cells, 2019, 8(10): 1128. doi: 10.3390/cells8101128
|
[5] |
ESSANDOH K, DENG S, WANG X, et al. Tsg101 positively regulates physiologic-like cardiac hypertrophy through FIP3-mediated endosomal recycling of IGF-1R[J]. FASEB J, 2019, 33(6): 7451-7466. doi: 10.1096/fj.201802338RR
|
[6] |
WEEKS K L, THAM Y K, YILDIZ S G, et al. FoxO1 is required for physiological cardiac hypertrophy induced by exercise but not by constitutively active PI3K[J]. Am J Physiol Heart Circ Physiol, 2021, 320(4): H1470-H1485. doi: 10.1152/ajpheart.00838.2020
|
[7] |
MA M, CHEN W, HUA Y, et al. Aerobic exercise ameliorates cardiac hypertrophy by regulating mitochondrial quality control and endoplasmic reticulum stress through M(2) AChR[J]. J Cell Physiol, 2021, 236(9): 6581-6596. doi: 10.1002/jcp.30342
|
[8] |
GAO R, WANG L, BEI Y, et al. Long Noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury[J]. Circulation, 2021, 144(4): 303-317. doi: 10.1161/CIRCULATIONAHA.120.050446
|
[9] |
LI H, TRAGER L E, LIU X, et al. lncExACT1 and DCHS2 regulate physiological and pathological cardiac growth[J]. Circulation, 2022, 145(16), 1218-1233. doi: 10.1161/CIRCULATIONAHA.121.056850
|
[10] |
GHOLIPOUR M, TABRIZI A. The role of Hippo signaling pathway in physiological cardiac hypertrophy[J]. Bioimpacts, 2020, 10(4): 251-257.
|
[11] |
胡东红, 黄晓霞, 郑灿坤, 等. 运动性心肌肥厚预适应的抗肥厚记忆及其与交感神经活性的关系[J]. 南方医科大学学报, 2021, 41(4): 495-503. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJD202104004.htm
HU D H, HUANG X X, ZHENG C K, et al. Contribution of sympathetic activation to antihypertrophic memory after regression of exercise-induced physiological myocardial hypertrophy in mice[J]. Journal of Southern Medical University, 2021, 41(4): 495-503. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJD202104004.htm
|
[12] |
LIN H, ZHU Y, ZHENG C, et al. Antihypertrophic memory after regression of exercise-induced physiological myocardial hypertrophy is mediated by the long noncoding RNA Mhrt779[J]. Circulation, 2021, 143(23): 2277-2292. doi: 10.1161/CIRCULATIONAHA.120.047000
|
[13] |
VUJIC A, LERCHENMVLLER C, WU T D, et al. Exercise induces new cardiomyocyte generation in the adult mammalian heart[J]. Nat Commun, 2018, 9(1): 1659. doi: 10.1038/s41467-018-04083-1
|
[14] |
CAI M X, SHI X C, CHEN T, et al. Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model[J]. Life Sci, 2016, 149(6): 1-9.
|
[15] |
邢维新, 田振军. 运动训练诱导大鼠心肌HGF和TGF-β1表达对心肌细胞增殖的影响[J]. 山东体育学院学报, 2018, 34(6): 84-90. doi: 10.14104/j.cnki.1006-2076.2018.06.015
XING W X, TIAN Z J. Effect of exercise training on the expression of HGF and TGF-β1 on the proliferation of myocardial cells in rats[J]. Journal of Shandong Sport University, 2018, 34(6): 84-90. doi: 10.14104/j.cnki.1006-2076.2018.06.015
|
[16] |
BO W, MA Y, XI Y, et al. The roles of FGF21 and ALCAT1 in aerobic exercise-induced cardioprotection of postmyocardial infarction mice[J]. Oxid Med Cell Longev, 2021, 2021: 8996482. DOI: 10.1155/2021/8996482.
|
[17] |
TAO R H, KOBAYASHI M, YANG Y, et al. Exercise inhibits doxorubicin-induced damage to cardiac vessels and activation of Hippo/YAP-mediated apoptosis[J]. Cancers (Basel), 2021, 13(11): 2740. doi: 10.3390/cancers13112740
|
[18] |
ZHANG X, HU C, KONG C Y, et al. FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT[J]. Cell Death Differ, 2020, 27(2): 540-555. doi: 10.1038/s41418-019-0372-z
|
[19] |
LU L, MA J, TANG J, et al. Irisin attenuates myocardial ischemia/reperfusion-induced cardiac dysfunction by regulating ER-mitochondria interaction through a mitochondrial ubiquitin ligase-dependent mechanism[J]. Clin Transl Med, 2020, 10(5): e166. DOI: 10.1002/ctm2.166.
|
[20] |
OTAKA N, SHIBATA R, OHASHI K, et al. Myonectin is an exercise-induced myokine that protects the heart from ischemia-reperfusion injury[J]. Circ Res, 2018, 123(12): 1326-1338. doi: 10.1161/CIRCRESAHA.118.313777
|
[21] |
ZHANG L, WANG X, ZHANG H, et al. Exercise-induced peptide EIP-22 protect myocardial from ischaemia/reperfusion injury via activating JAK2/STAT3 signalling pathway[J]. J Cell Mol Med, 2021, 25(7): 3560-3572. doi: 10.1111/jcmm.16441
|
[22] |
CHENG Z, ZHANG H, ZHANG L, et al. Exercise-induced peptide TAG-23 protects cardiomyocytes from reperfusion injury through regulating PKG-cCbl interaction[J]. Basic Res Cardiol, 2021, 116(1): 41. doi: 10.1007/s00395-021-00878-4
|
[23] |
DONNIACUO M, URBANEK K, NEBBIOSO A, et al. Cardioprotective effect of a moderate and prolonged exercise training involves sirtuin pathway[J]. Life Sci, 2019, 222(7): 140-147.
|
[24] |
PIRES D S J, MONCEAUX K, GUILBERT A, et al. SIRT1 protects the heart from ER stress-induced injury by promoting eEF2K/eEF2-dependent autophagy[J]. Cells, 2020, 9(2): 426. doi: 10.3390/cells9020426
|
[25] |
XU J J, CUI J, LIN Q, et al. Protection of the enhanced Nrf2 deacetylation and its downstream transcriptional activity by SIRT1 in myocardial ischemia/reperfusion injury[J]. Int J Cardiol, 2021, 342(21): 82-93.
|
[26] |
ZHAO D, SUN Y, TAN Y, et al. Short-duration swimming exercise after myocardial infarction attenuates cardiac dysfunction and regulates mitochondrial quality control in aged mice[J]. Oxid Med Cell Longev, 2018, 2018: 4079041. DOI: 10.1155/2018/4079041.
|
[27] |
HOU Z, QIN X, HU Y, et al. Longterm exercise-derived exosomal miR-342-5p: a novel exerkine for cardioprotection[J]. Circ Res, 2019, 124(9): 1386-1400. doi: 10.1161/CIRCRESAHA.118.314635
|
[28] |
BEI Y, LU D, BǍR C, et al. miR-486 attenuates cardiac ischemia/reperfusion injury and mediates the beneficial effect of exercise for myocardial protection[J]. Mol Ther, 2022, 30(4): 1675-1691. doi: 10.1016/j.ymthe.2022.01.031
|
[29] |
SUN X H, WANG X, ZHANG Y, et al. Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway[J]. Thromb Res, 2019, 177(4): 23-32.
|
[30] |
MA Y, KUANG Y, BO W, et al. Exercise training alleviates cardiac fibrosis through increasing fibroblast growth factor 21 and regulating TGF-β1-Smad2/3-MMP2/9 signaling in mice with myocardial infarction[J]. Int J Mol Sci, 2021, 22(22): 12341. doi: 10.3390/ijms222212341
|
[31] |
CHEN X, LI H, WANG K, et al. Aerobic exercise ameliorates myocardial inflammation, fibrosis and apoptosis in high-fat-diet rats by inhibiting P2X7 purinergic receptors[J]. Front Physiol, 2019, 10: 1286. DOI: 10.3389/fphys.2019.01286.
|
[32] |
ZHOU J, TIAN G, QUAN Y, et al. Inhibition of P2X7 purinergic receptor ameliorates cardiac fibrosis by suppressing NLRP3/IL-1β pathway[J]. Oxid Med Cell Longev, 2020, 2020: 7956274. DOI: 10.1155/2020/7956274.
|
[33] |
PAN J A, ZHANG H, LIN H, et al. Irisin ameliorates doxorubicin-induced cardiac perivascular fibrosis through inhibiting endothelial-to-mesenchymal transition by regulating ROS accumulation and autophagy disorder in endothelial cells[J]. Redox Biol, 2021, 46(9): 102120. DOI: 10.1016/j.redox.2021.102120.
|
[34] |
WANG B L, JIN H, HAN X Q, et al. Involvement of brain-derived neurotrophic factor in exercise-induced cardioprotection of post-myocardial infarction rats[J]. Int J Mol Med, 2018, 42(5): 2867-2880.
|
[35] |
SONG W, LIANG Q, CAI M, et al. HIF-1α-induced up-regulation of microRNA-126 contributes to the effectiveness of exercise training on myocardial angiogenesis in myocardial infarction rats[J]. J Cell Mol Med, 2020, 24(22): 12970-12979. doi: 10.1111/jcmm.15892
|
[36] |
TIAN X, ZHOU N, YUAN J, et al. Heat shock transcription factor 1 regulates exercise-induced myocardial angiogenesis after pressure overload via HIF-1α/VEGF pathway[J]. J Cell Mol Med, 2020, 24(3): 2178-2188. doi: 10.1111/jcmm.14872
|
[37] |
LIAO Q, QU S, TANG L X, et al. Irisin exerts a therapeutic effect against myocardial infarction via promoting angiogenesis[J]. Acta Pharmacol Sin, 2019, 40(10): 1314-1321. doi: 10.1038/s41401-019-0230-z
|
[38] |
GOETZE J P, BRUNEAU B G, RAMOS H R, et al. Cardiac natriuretic peptides[J]. Nat Rev Cardiol, 2020, 17(11): 698-717.
|
[39] |
FOINQUINOS A, BATKAI S, GENSCHEL C, et al. Preclinical development of a miR-132 inhibitor for heart failure treatment[J]. Nat Commun, 2020, 11(1): 633.
|
[40] |
DA R A, TEIXEIRA G R, PINTO A P, et al. Excessive training induces molecular signs of pathologic cardiac hypertrophy[J]. J Cell Physiol, 2018, 233(11): 8850-8861.
|