Citation: | LI Xiaoxiong, LI Jinping, HUANG Jie, MA Jingjing, HOU Mingliang, MA Linqiu, WANG Congguo, ZHOU Huadong. Analysis of circRNA and mRNA expression profiles in Alzheimer's disease mice treated with islet amyloid polypeptide[J]. Chinese Journal of General Practice, 2023, 21(7): 1101-1104. doi: 10.16766/j.cnki.issn.1674-4152.003059 |
[1] |
王琼, 王国平. 阿尔茨海默病的诊断与治疗[J]. 中华全科医学, 2019, 17(8): 1255-1256. http://www.zhqkyx.net/cn/article/id/18f73bba-8d0a-4fc0-8880-f792d4b6bd77
WANG Q, WANG G P. Diagnosis and treatment of Alzheimer's disease[J]. Chinese Journal of General Practice, 2019, 17(8): 1255-1256. http://www.zhqkyx.net/cn/article/id/18f73bba-8d0a-4fc0-8880-f792d4b6bd77
|
[2] |
邱聪龙, 张怡, 陈寿林, 等. 不同程度阿尔茨海默病患者血脂水平的研究[J]. 中华全科医学, 2020, 18(12): 2043-2046. doi: 10.16766/j.cnki.issn.1674-4152.001684
QIU C L, ZHANG Y, CHEN S L, et al. A study of serum lipid levels in patients with different degrees of Alzheimer's disease[J]. Chinese Journal of General Practice, 2020, 18(12): 2043-2046. doi: 10.16766/j.cnki.issn.1674-4152.001684
|
[3] |
MARMENTINI C, BRANCO R C S, BOSCHERO A C, et al. Islet amyloid toxicity: from genesis to counteracting mechanisms[J]. J Cell Physiol, 2022, 237(2): 1119-1142. doi: 10.1002/jcp.30600
|
[4] |
BHARADWAJ P, SOLOMON T, SAHOO B R, et al. Amylin and beta amyloid proteins interact to form amorphous heterocomplexes with enhanced toxicity in neuronal cells[J]. Sci Rep, 2020, 10(1): 10356. DOI: 10.1038/s41598-020-66602-9.
|
[5] |
DHARMARAJ G L, ARIGO F D, YOUNG K A, et al. Novel amylin analogues reduce amyloid-β cross-seeding aggregation and neurotoxicity[J]. J Alzheimers Dis, 2022, 87(1): 373-390. doi: 10.3233/JAD-215339
|
[6] |
SINGH S, YANG F, SIVILS A, et al. Amylin and secretases in the pathology and treatment of Alzheimer's disease[J]. Biomolecules, 2022, 12(7): 996. doi: 10.3390/biom12070996
|
[7] |
GAN Q N, YAO H B, NA H, et al. Effects of amylin against amyloid-β-induced tauopathy and synapse loss in primary neurons[J]. J Alzheimers Dis, 2019, 70(4): 1025-1040. doi: 10.3233/JAD-190161
|
[8] |
HUANG A Q, ZHENG H X, WU Z Y, et al. Circular RNA-protein interactions: functions, mechanisms, and identification[J]. Theranostics, 2020, 10(8): 3503-3517. doi: 10.7150/thno.42174
|
[9] |
COCHRAN K R, VEERARAGHAVAN K, KUNDU G, et al. Systematic identification of circRNAs in Alzheimer's disease[J]. Genes(Basel), 2021, 12(8): 1258.
|
[10] |
LIN Z J, TANG X Z, WAN J, et al. Functions and mechanisms of circular RNAs in regulating stem cell differentiation[J]. RNA Biol, 2021, 18(12): 2136-2149. doi: 10.1080/15476286.2021.1913551
|
[11] |
SOUDY R, KIMURA R, PATEL A, et al. Short amylin receptor antagonist peptides improve memory deficits in Alzheimer's disease mouse model[J]. Sci Rep, 2019, 9(1): 10942. DOI: 10.1038/s41598-019-47255-9.
|
[12] |
PATRICK S, CORRIGAN R, GRIZZANTI J, et al. Neuroprotective effects of the amylin analog, pramlintide, on Alzheimer's disease are associated with oxidative stress regulation mechanisms[J]. J Alzheimers Dis, 2019, 69(1): 157-168. doi: 10.3233/JAD-180421
|
[13] |
JEONG J K, DOW S A, YOUNG C N. Sensory circumventricular organs, neuroendocrine control, and metabolic regulation[J]. Metabolites, 2021, 11(8): 494. doi: 10.3390/metabo11080494
|
[14] |
SERVIZI S, CORRIGAN R R, CASADESUS G. The importance of understanding amylin signaling mechanisms for therapeutic development in the treatment of Alzheimer's disease[J]. Curr Pharm Des, 2020, 26(12): 1345-1355. doi: 10.2174/1381612826666200318151146
|
[15] |
MA N N, TIE C R, YU B, et al. Circular RNAs regulate its parental genes transcription in the AD mouse model using two methods of library construction[J]. FASEB J, 2020, 34(8): 10342-10356. doi: 10.1096/fj.201903157R
|
[16] |
WU K, NIE B, LI L Y, et al. Bioinformatics analysis of high frequency mutations in myelodysplastic syndrome-related patients[J]. Ann Transl Med, 2021, 9(19): 1491. doi: 10.21037/atm-21-4094
|
[17] |
JO S L, YANG H, LEE S R, et al. Curcumae radix decreases neurodegenerative markers through glycolysis decrease and TCA cycle activation[J]. Nutrients, 2022, 14(8): 1587. doi: 10.3390/nu14081587
|
[18] |
KRISHNA-K K, BABY N, RAGHURAMAN R, et al. Regulation of aberrant proteasome activity re-establishes plasticity and long-term memory in an animal model of Alzheimer's disease[J]. FASEB J, 2020, 34(7): 9466-9479. doi: 10.1096/fj.201902844RR
|
[19] |
CHOCRON E S, MUNKÁCSY E, KIM H S, et al. Genetic and pharmacologic proteasome augmentation ameliorates Alzheimer's-like pathology in mouse and fly APP overexpression models[J]. Sci Adv, 2022, 8(23): eabk2252. DOI: 10.1126/sciadv.abk2252.
|
[20] |
CRISTIANO C, VOLPICELLI F, LIPPIELLO P, et al. Neutralization of IL-17 rescues amyloid-β-induced neuroinflammation and memory impairment[J]. Br J Pharmacol, 2019, 176(18): 3544-3557. doi: 10.1111/bph.14586
|
[21] |
PARK J C, HAN S H, MOOK-JUNG I. Peripheral inflammatory biomarkers in Alzheimer's disease: a brief review[J]. BMB Rep, 2020, 53(1): 10-19. doi: 10.5483/BMBRep.2020.53.1.309
|