Citation: | ZHANG Yongqi, ZOU Zhenhai, WU Mengqi, LIU Beibei, GUO Yuanyuan, LIU Jianmin. Knockdown of EPHA2 regulates autophagy and biological behavior of bladder cancer cell through mTOR phosphorylation[J]. Chinese Journal of General Practice, 2023, 21(7): 1117-1120. doi: 10.16766/j.cnki.issn.1674-4152.003063 |
[1] |
刘文龙, 任明华. 饮食与膀胱癌关系的研究进展[J]. 临床与病理杂志, 2020, 40(7): 1851-1854. https://www.cnki.com.cn/Article/CJFDTOTAL-WYSB202007036.htm
LIU W L, REN M H. Research progress on the relationship between Diet and bladder cancer[J]. JCPR, 2020, 40(7): 1851-1854. https://www.cnki.com.cn/Article/CJFDTOTAL-WYSB202007036.htm
|
[2] |
CHEN Y, ZHAO S M, ZHANG X F, et al. Research progress on the bladder tumor markers in urine[J]. IMHGN, 2020, 26(2): 293-296.
|
[3] |
JANES P W, VAIl M E, ERNST M, et al. Eph receptors in the immunosuppressive tumor microenvironment[J]. Cancer Res, 2021, 81(4): 801-805. doi: 10.1158/0008-5472.CAN-20-3047
|
[4] |
LIU B B, SUN W, GAO W Y, et al. microRNA-451a promoter methylation regulated by DNMT3B expedites bladder cancer development via the EPHA2/PI3K/AKT axis[J]. BMC Cancer, 2020, 20(1): 1019. doi: 10.1186/s12885-020-07523-8
|
[5] |
WEI X Y, LUO L F, CHEN J Z. Roles of mTOR signaling in tissue regeneration[J]. Cells, 2019, 8(9): 1075. doi: 10.3390/cells8091075
|
[6] |
CHEN Z H, LIU Z T, ZHANG M Q, et al. EPHA2 blockade reverses acquired resistance to afatinib induced by EPHA2-mediated MAPK pathway activation in gastric cancer cells and avatar mice[J]. Int J Cancer, 2019, 145(9): 2440-2449. doi: 10.1002/ijc.32313
|
[7] |
曹振学, 郭园园, 刘贝贝, 等. miR-15a与临床膀胱癌患者术后复发的相关性分析[J]. 中华全科医学, 2021, 19(4): 547-549, 647. doi: 10.16766/j.cnki.issn.1674-4152.001857
CAO Z X, GUO Y Y, LIU B B, et al. Correlation analysis of mir-15a and postoperative recurrence amongst patients with bladder carcinoma[J]. Chinese Journal of General Practice, 2021, 19(4): 547-549, 647. doi: 10.16766/j.cnki.issn.1674-4152.001857
|
[8] |
LENIS A T, LEC P M, CHAMIE K, et al. Bladder cancer: a review[J]. JAMA, 2020, 324(19): 1980-1991. doi: 10.1001/jama.2020.17598
|
[9] |
HARSANYI S, NOVAKOVA Z V, BEVIZOVA K, et al. Biomarkers of bladder cancer: cell-free DNA, epigenetic modifications and non-coding RNAs[J]. Int J Mol Sci, 2022, 23(21): 13206. DOI: 10.3390/ijms232113206.
|
[10] |
WEN Y C, DU M K, LI M W, et al. EphA2-positive human umbilical cord-derived mesenchymal stem cells exert anti-fibrosis and immunomodulatory activities via secretion of prostaglandin E2[J]. Taiwan J Obstet Gynecol, 2018, 57(5): 722-725. doi: 10.1016/j.tjog.2018.08.020
|
[11] |
WILSON K, SHIUAN E, BRANTLEY-SIEDERS D M. Oncogenic functions and therapeutic targeting of EphA2 in cancer[J]. Oncogene, 2021, 40(14): 2483-2495. doi: 10.1038/s41388-021-01714-8
|
[12] |
PENG G R, MENG H X, PAN H X, et al. CircRNA 001418 promoted cell growth and metastasis of bladder carcinoma via EphA2 by miR-1297[J]. Curr Mol Pharmacol, 2021, 14(1): 68-78.
|
[13] |
ONORATI A V, DYCZYNSKI M, OJHA R, et al. Targeting autophagy in cancer[J]. Cancer, 2018, 124(16): 3307-3318. doi: 10.1002/cncr.31335
|
[14] |
KUMAR A V, MILLS J, LAPIERRE L R. Selective autophagy receptor p62/SQSTM1, a pivotal player in stress and aging[J]. Front Cell Dev Biol, 2022, 10: 793328. DOI: 10.3389/fcell.2022.793328.
|
[15] |
MITTAL V. Epithelial mesenchymal transition in tumor metastasis[J]. Annu Rev Pathol, 2018, 13: 395-412. doi: 10.1146/annurev-pathol-020117-043854
|
[16] |
BI J M, LIU H W, DONG W, et al. Circular RNA circ-ZKSCAN1 inhibits bladder cancer progression through miR-1178-3p/p21 axis and acts as a prognostic factor of recurrence[J]. Mol Cancer, 2019, 18(1): 133. doi: 10.1186/s12943-019-1060-9
|
[17] |
WANG Y, HU Y S, LI M L, et al. Up regulation of miR-184 inhibits the proliferation, invasion and migration of bladder cancer cells by targeting AGO2 via AKT/mTOR signaling pathway[J]. J Mod Urol, 2020, 25(7): 631-637.
|
[18] |
吕建阳, 李振国, 陈林, 等. CerS2对膀胱癌细胞增殖、迁移及AKT/mTOR信号通路的影响[J]. 现代肿瘤医学, 2021, 29(22): 3885-3889. doi: 10.3969/j.issn.1672-4992.2021.22.001
LYU J Y, LI Z G, CHEN L, et al. Effects of CerS2 on bladder cancer cell proliferation, migration and AKT/mTOR signaling pathway[J]. Journal of Modern Oncology, 2021, 29(22): 3885-3889. doi: 10.3969/j.issn.1672-4992.2021.22.001
|
[19] |
COSTA R L B, HAN H S, GRADISHAR W J. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review[J]. Breast Cancer Res Treat, 2018, 169(3): 397-406.
|
[20] |
LIU G Y, SABATINI D M. mTOR at the nexus of nutrition, growth, ageing and disease[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 183-203.
|
[21] |
MALLELA K, KUMAR A. Role of TSC1 in physiology and diseases[J]. Mol Cell Biochem, 2021, 476(6): 2269-2282.
|
[22] |
郭晓强. 雷帕霉素靶蛋白: 细胞生长调控之门[J]. 自然杂志, 2018, 40(4): 297-304. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201804013.htm
GUO X Q. TOR(target of rapamycin): the gate of cell growth[J]. Chinese Journal of Nature, 2018, 40(4): 297-304. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201804013.htm
|
[23] |
TESSIRI S, TECHASEN A, KONGPETCH S, et al. Therapeutic targeting of ARID1A and PI3K/AKT pathway alterations in cholangiocarcinoma[J]. Peer J, 2022, 10: e12750. DOI: 10.7717/peerj.12750.
|
[24] |
ZHAO P, JIANG D W, HUANG Y C, et al. EphA2: a promising therapeutic target in breast cancer[J]. J Genet Genomics, 2021, 48(4): 261-267.
|
[25] |
WANG F Q, ZHANG H Z, CHENG Z G. EPHA2 promotes the invasion and migration of human tongue squamous cell carcinoma Cal-27 cells by enhancing AKT/mTOR signaling pathway[J]. Biomed Res Int, 2021: 4219690. DOI: 10.1155/2021/4219690.
|