Volume 21 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
HAN Zhenyuan, WANG Xiaoyan. Research progress on the cGAS-STING pathway in the kidney disease[J]. Chinese Journal of General Practice, 2023, 21(12): 2119-2123. doi: 10.16766/j.cnki.issn.1674-4152.003304
Citation: HAN Zhenyuan, WANG Xiaoyan. Research progress on the cGAS-STING pathway in the kidney disease[J]. Chinese Journal of General Practice, 2023, 21(12): 2119-2123. doi: 10.16766/j.cnki.issn.1674-4152.003304

Research progress on the cGAS-STING pathway in the kidney disease

doi: 10.16766/j.cnki.issn.1674-4152.003304
Funds:

 81970605

  • Received Date: 2023-06-08
    Available Online: 2024-01-29
  • As an important component of the innate immune system, the cyclic guanosine monophosphate-adenosine monophosphate synthase stimulator of interferon genes (cGAS-STING) signaling pathway plays a critical role in mediating immune responses by inducing the secretion of type Ⅰ interferons and inflammatory cytokines. The cGAS-STING pathway activates interferon regulatory factor 3 or nuclear factor-κB and is involved in inflammation, infection, cellular homeostasis, obesity and organ fibrosis. In addition, the role of the cGAS-STING pathway in common kidney diseases is increasingly appreciated by clinical and basic researchers. Recent studies have shown that activation of the cGAS-STING pathway in acute kidney injury can trigger the release of inflammatory factors and exacerbate inflammation. This abnormal activation of the pathway is closely linked to the development and progression of kidney fibrosis in chronic kidney disease. In addition, the cGAS-STING pathway also plays an important role in kidney cancer. The cGAS-STING pathway is therefore a promising target for the treatment of kidney diseases. However, more research is needed to fully understand the specific mechanisms and therapeutic potential of the cGAS-STING pathway in kidney disease. In order to provide clinicians and researchers with new perspectives, this paper reviews recent research progress on the cGAS-STING pathway in common kidney diseases, discusses the role of this pathway in the pathogenesis of acute kidney injury, chronic kidney disease and renal cancer, and highlights the potential of this pathway as an effective therapeutic target, especially for acute kidney injury, in an attempt to provide new insights and approaches for the treatment of kidney diseases.

     

  • loading
  • [1]
    MAEKAWA H, INOUE T, JAO T M, et al. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury[J]. SSRN Electron J, 2019, 29(5): 1261-1273.e6.
    [2]
    MITROFANOVA A, FONTANELLA A, TOLERICO M, et al. Activation of stimulator of IFN genes (STING) causes proteinuria and contributes to glomerular diseases[J]. J Am Soc Nephrol, 2022, 33(12): 2153-2173. doi: 10.1681/ASN.2021101286
    [3]
    JI F, ZHANG F, ZHANG M, et al. Targeting the DNA damage response enhances CD70 CAR-T cell therapy for renal carcinoma by activating the cGAS-STING pathway[J]. J Hematol Oncol, 2021, 14(1): 152. doi: 10.1186/s13045-021-01168-1
    [4]
    HOPFNER K P, HORNUNG V. Molecular mechanisms and cellular functions of cGAS-STING signalling[J]. Nat Rev Mol Cell Biol, 2020, 21(9): 501-521. doi: 10.1038/s41580-020-0244-x
    [5]
    CHEN C, XU P L. Cellular functions of cGAS-STING signaling[J]. Trends Cell Biol, 2023, 33(8): 630-648. doi: 10.1016/j.tcb.2022.11.001
    [6]
    DING C, SONG Z, SHEN A, et al. Small molecules targeting the innate immune cGAS-STING-TBK1 signaling pathway[J]. Acta Pharm Sin B, 2020, 10(12): 2272-2298. doi: 10.1016/j.apsb.2020.03.001
    [7]
    LI T, CHEN Z J. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer[J]. J Exp Med, 2018, 215(5): 1287-1299. doi: 10.1084/jem.20180139
    [8]
    GUAN J, TONG X, ZHANG Y, et al. Nephrotoxicity induced by cisplatin is primarily due to the activation of the 5-hydroxytryptamine degradation system in proximal renal tubules[J]. Chem Biol Interact, 2021, 349: 109662. doi: 10.1016/j.cbi.2021.109662
    [9]
    KELLUM J A, ROMAGNANI P, ASHUNTANTANG G, et al. Acute kidney injury[J]. Nat Rev Dis Primers, 2021, 7(1): 52. doi: 10.1038/s41572-021-00284-z
    [10]
    MCSWEENEY K R, GADANEC L K, QARADAKHI T, et al. Mechanisms of cisplatin-induced acute kidney injury: pathological mechanisms, pharmacological interventions, and genetic mitigations[J]. Cancers(Basel), 2021, 13(7): 1572.
    [11]
    QI J, LUO Q, ZHANG Q, et al. Yi-Shen-Xie-Zhuo formula alleviates cisplatin-induced AKI by regulating inflammation and apoptosis via the cGAS/STING pathway[J]. J Ethnopharmacol, 2023, 309: 116327. doi: 10.1016/j.jep.2023.116327
    [12]
    LUO S, YANG M, HAN Y, et al. beta-Hydroxybutyrate against Cisplatin-Induced acute kidney injury via inhibiting NLRP3 inflammasome and oxidative stress[J]. Int Immunopharmacol, 2022, 111: 109101. doi: 10.1016/j.intimp.2022.109101
    [13]
    NIEUWENHUIJS-MOEKE G J, PISCHKE S E, BERGER S P, et al. Ischemia and reperfusion injury in kidney transplantation: relevant mechanisms in injury and repair[J]. J Clin Med, 2020, 9(1): 253. doi: 10.3390/jcm9010253
    [14]
    CAO J Y, WANG B, TANG T T, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury[J]. Theranostics, 2021, 11(11): 5248-5266. doi: 10.7150/thno.54550
    [15]
    LIVINGSTON M J, SHU S, FAN Y, et al. Tubular cells produce FGF2 via autophagy after acute kidney injury leading to fibroblast activation and renal fibrosis[J]. Autophagy, 2023, 19(1): 256-277. doi: 10.1080/15548627.2022.2072054
    [16]
    PABLA N, BAJWA A. Role of mitochondrial therapy for ischemic-reperfusion injury and acute kidney injury[J]. Nephron, 2022, 146(3): 253-258. doi: 10.1159/000520698
    [17]
    TANG C, HAN H, YAN M, et al. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury[J]. Autophagy, 2018, 14(5): 880-897. doi: 10.1080/15548627.2017.1405880
    [18]
    LI J, SUN X, YANG N, et al. Phosphoglycerate mutase 5 initiates inflammation in acute kidney injury by triggering mitochondrial DNA release by dephosphorylating the pro-apoptotic protein Bax[J]. Kidney Int, 2023, 103(1): 115-133. doi: 10.1016/j.kint.2022.08.022
    [19]
    FENG Y, IMAM ALIAGAN A, TOMBO N, et al. RIP3 translocation into mitochondria promotes mitofilin degradation to increase inflammation and kidney injury after renal ischemia-reperfusion[J]. Cells, 2022, 11(12): 1894. doi: 10.3390/cells11121894
    [20]
    LIAO Y, CHENG J, KONG X, et al. HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway[J]. Theranostics, 2020, 10(21): 9644-9662. doi: 10.7150/thno.47651
    [21]
    LEI C, TAN Y, NI D, et al. cGAS-STING signaling in ischemic diseases[J]. Clin Chim Acta, 2022, 531: 177-182. doi: 10.1016/j.cca.2022.04.003
    [22]
    CHUNG K W, DHILLON P, HUANG S, et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis[J]. Cell Metab, 2019, 30(4): 784-799.e5. doi: 10.1016/j.cmet.2019.08.003
    [23]
    FU H, LIU S, BASTACKY S I, et al. Diabetic kidney diseases revisited: a new perspective for a new era[J]. Mol Metab, 2019, 30: 250-263. doi: 10.1016/j.molmet.2019.10.005
    [24]
    TUTTLE K R, AGARWAL R, ALPERS C E, et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease[J]. Kidney Int, 2022, 102(2): 248-260. doi: 10.1016/j.kint.2022.05.012
    [25]
    HUANG T S, WU T, WU Y D, et al. Long-term statins administration exacerbates diabetic nephropathy via ectopic fat deposition in diabetic mice[J]. Nat Commun, 2023, 14(1): 390. doi: 10.1038/s41467-023-35944-z
    [26]
    STENVINKEL P, CHERTOW G M, DEVARAJAN P, et al. Chronic inflammation in chronic kidney disease progression: role of Nrf2[J]. Kidney Int Rep, 2021, 6(7): 1775-1787. doi: 10.1016/j.ekir.2021.04.023
    [27]
    ZANG N, CUI C, GUO X, et al. cGAS-STING activation contributes to podocyte injury in diabetic kidney disease[J]. iScience, 2022, 25(10): 105145. doi: 10.1016/j.isci.2022.105145
    [28]
    CHEN X, HAN Y, GAO P, et al. Disulfide-bond A oxidoreductase-like protein protects against ectopic fat deposition and lipid-related kidney damage in diabetic nephropathy[J]. Kidney Int, 2019, 95(4): 880-895. doi: 10.1016/j.kint.2018.10.038
    [29]
    HAN W, DU C, ZHU Y, et al. Targeting myocardial mitochondria-STING-polyamine axis prevents cardiac hypertrophy in chronic kidney disease[J]. JACC Basic Transl Sci, 2022, 7(8): 820-840. doi: 10.1016/j.jacbts.2022.03.006
    [30]
    BI X J, DU C H, WANG X M, et al. Mitochondrial damage-induced innate immune activation in vascular smooth muscle cells promotes chronic kidney disease-associated plaque vulnerability[J]. Adv Sci(Weinh), 2021, 8(5): 2002738. DOI: 10.1002/advs.202002738.
    [31]
    ABLASSER A, HUR S. Regulation of cGAS- and RLR-mediated immunity to nucleic acids[J]. Nat Immunol, 2020, 21(1): 17-29. doi: 10.1038/s41590-019-0556-1
    [32]
    SHU H B, WANG Y Y. Adding to the STING[J]. Immunity, 2014, 41(6): 871-873. doi: 10.1016/j.immuni.2014.12.002
    [33]
    TAKAHASHI M, LIO C J, CAMPEAU A, et al. The tumor suppressor kinase DAPK3 drives tumor-intrinsic immunity through the STING-IFN-beta pathway[J]. Nat Immunol, 2021, 22(4): 485-496. doi: 10.1038/s41590-021-00896-3
    [34]
    SHI J Q, LIU C Q, LUO S N, et al. STING agonist and IDO inhibitor combination therapy inhibits tumor progression in murine models of colorectal cancer[J]. Cell Immunol, 2021, 366: 104384. DOI: 10.1016/j.cellimm.2021.104384.
    [35]
    BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
    [36]
    WU Z, LIN Y, LIU L M, et al. Identification of cytosolic DNA sensor cGAS-STING as immune-related risk factor in renal carcinoma following pan-cancer analysis[J]. J Immunol Res, 2022, 2022: 7978042. DOI: 10.1155/2022/7978042.
    [37]
    AN X, ZHU Y, ZHENG T, et al. An analysis of the expression and association with immune cell infiltration of the cGAS/STING pathway in pan-cancer[J]. Mol Ther Nucleic Acids, 2019, 14: 80-89. doi: 10.1016/j.omtn.2018.11.003
    [38]
    王星月, 江蕾, 杨俊伟. 巨噬细胞能量代谢与肾脏疾病的研究进展[J]. 中华全科医学, 2020, 18(8): 1348-1352. doi: 10.16766/j.cnki.issn.1674-4152.001504

    WANG X Y, JIANG L, YANG J W. The role of metabolism in macrophage in Kidney diseases[J]. Chinese Journal of General Practice, 2020, 18(8): 1348-1352. doi: 10.16766/j.cnki.issn.1674-4152.001504
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (339) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return