Volume 22 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
WANG Yu, CHEN Fangfang, WANG Chao, GUO Han, WANG Suhang, LIU Mulin. Value of c-MYC expression in a lymph node metastasis risk prediction model for colon cancer[J]. Chinese Journal of General Practice, 2024, 22(3): 372-375. doi: 10.16766/j.cnki.issn.1674-4152.003405
Citation: WANG Yu, CHEN Fangfang, WANG Chao, GUO Han, WANG Suhang, LIU Mulin. Value of c-MYC expression in a lymph node metastasis risk prediction model for colon cancer[J]. Chinese Journal of General Practice, 2024, 22(3): 372-375. doi: 10.16766/j.cnki.issn.1674-4152.003405

Value of c-MYC expression in a lymph node metastasis risk prediction model for colon cancer

doi: 10.16766/j.cnki.issn.1674-4152.003405
Funds:

 2108085MH291

 20220133

  • Received Date: 2023-03-28
    Available Online: 2024-05-27
  •   Objective  To examine the correlation between the expression of cellular-myelocytomatosis viral oncogene (c-MYC) and lymph node metastasis risk in colon cancer, develop a risk prediction model and evaluate its significance.  Methods  The medical records of 304 patients who underwent radical colon cancer surgery at the First Affiliated Hospital of Bengbu Medical University from January 2020 to December 2022 were collected. The patients were randomly divided into a model group and a validation group, each comprising 152 cases. We analyzed the factors influencing lymph node metastasis and identified the risk variables for input into the prediction model. The characteristics of colon cancer lymph node metastasis were then analyzed using an artificial intelligence system through deep learning. Finally, we assessed the effectiveness of the model.  Results  Univariate analysis showed that the neutrophil-to-lymphocyte ratio (NLR), c-MYC expression, tumor morphology, vascular cancer thrombus, tumor length, and tumor differentiation degree of 152 colon cancer patients in the model group were related to their lymph node metastasis. Further multivariate analysis identified the neutrophil-lymphocyte ratio, c-MYC expression, tumor morphology, vascular cancer thrombus, tumor length and diameter, and tumor differentiation degree as significant risk relevant variables for lymph node metastasis in colon cancer. The ROC curve based on the prediction model showed an AUC of 0.745 (95% CI: 0.712-0.803) in the validation group and 0.832 (95% CI: 0.796-0.875) in the model group, suggesting the effective predictive capability of the risk prediction model for lymph node metastasis in colon cancer patients.  Conclusion  The NLR, c-MYC expression, tumor morphology, vascular cancer thrombus, tumor length, and tumor differentiation were significant risk variables affecting lymph node metastasis in colon cancer. The risk prediction model constructed in this study demonstrates accurate identification of lymph node metastasis risk in colon cancer patients, holding promising clinical applications.

     

  • loading
  • [1]
    DHANASEKARAN R, DEUTZMANN A, MAHAUAD W D, et al. The MYC oncogene: the grand orchestrator of cancer growth and immune evasion[J]. Nat Rev Clin Oncol, 2022, 19(1): 23-36. doi: 10.1038/s41571-021-00549-2
    [2]
    CHUANG J P, TSAI H L, CHEN P J, et al. Comprehensive review of biomarkers for the treatment of locally advanced colon cancer[J]. Cells, 2022, 11(23): 37-44.
    [3]
    DUFFY M J, GRADY S, TANG M, et al. MYC as a target for cancer treatment[J]. Cancer Treat Rev, 2021, 94(2): 152-154.
    [4]
    TANG J, YAN T, BAO Y, et al. LncRNA GLCC1 promotes colorectal carcinogenesis and glucose metabolism by stabilizing c-Myc[J]. Nat Commun, 2019, 10(1): 34-39. doi: 10.1038/s41467-018-08006-y
    [5]
    GEORGE J, LI Y, KADAMBERI I P, et al. RNA-binding protein FXR1 drives cMYC translation by recruiting eIF4F complex to the translation start site[J]. Cell Rep, 2021, 37(5): 109-114.
    [6]
    SINGH K B, HAHM E R, SINGH S V. Leelamine suppresses cMYC expression in prostate cancer cells in vitro and inhibits prostate carcinogenesis in vivo[J]. J Cancer Metastasis Treat, 2021, 7(16): 704-722.
    [7]
    MIHASHI Y, KIMURA S, IWASAKI H, et al. Large cell morphology, CMYC+ tumour cells, and PD-1+ tumour cell/intense PD-L1+ cell reactions are important prognostic factors in nodal peripheral T-cell lymphomas with T follicular helper markers[J]. Diagn Pathol, 2021, 16(1): 101-105. doi: 10.1186/s13000-021-01163-7
    [8]
    WU H, YANG T Y, LI Y, et al. Tumor necrosis factor receptor-associated factor 6 promotes hepatocarcinogenesis by interacting with histone deacetylase 3 to enhance c-Myc gene expression and protein stability[J]. Hepatology, 2020, 71(1): 148-163. doi: 10.1002/hep.30801
    [9]
    ROBISON T H, SOLIPURAM M, HEIST K, et al. Multiparametric MRI to quantify disease and treatment response in mice with myeloproliferative neoplasms[J]. JCI Insight, 2022, 7(19): 161-167.
    [10]
    MIN J K, KWAK M S, CHA J M. Overview of deep learning in gastrointestinal endoscopy[J]. Gut Liver, 2019, 13(4): 388-393. doi: 10.5009/gnl18384
    [11]
    LI K, FATHAN M I, PATEL K, et al. Colonoscopy polyp detection and classification: dataset creation and comparative evaluations[J]. PLoS One, 2021, 16(8): 254-259.
    [12]
    BLANES V, BAATRUP G, NADIMI E S. Addressing priority challenges in the detection and assessment of colorectal polyps from capsule endoscopy and colonoscopy in colorectal cancer screening using machine learning[J]. Acta Oncol, 2019, 58(sup1): S29-S36. doi: 10.1080/0284186X.2019.1584404
    [13]
    SHINJI S, YAMADA T, MATSUDA A, et al. Recent advances in the treatment of colorectal cancer: a review[J]. Nippon Med Sch, 2022, 89(3): 246-254. doi: 10.1272/jnms.JNMS.2022_89-310
    [14]
    YANG C Y, YEN M H, KIU K T, et al. Outcomes of right-sided and left-sided colon cancer after curative resection[J]. Sci Rep, 2022, 12(1): 118-123. doi: 10.1038/s41598-021-02808-9
    [15]
    柳亚魁, 王栓虎. Ⅰ~Ⅲ期不同部位的左右半结肠癌临床病理特征及预后比较分析[J]. 中华全科医学, 2022, 20(4): 587-590. doi: 10.16766/j.cnki.issn.1674-4152.002406

    LIU Y K, WANG S H. Comparative analysis on the clinicopathological characteristics and prognosis of left and right colon cancer at stageⅠ-Ⅲ[J]. Chinese Journal of General Practice, 2022, 20(4): 587-590. doi: 10.16766/j.cnki.issn.1674-4152.002406
    [16]
    JIN J, ZHANG Q, DONG B, et al. Automatic detection of early gastric cancer in endoscopy based on Mask region-based convolutional neural networks (Mask R-CNN) (with video)[J]. Front Oncol, 2022, 12(9): 278-288.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (130) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return