Citation: | YANG Junyu, SHEN Ji, SHEN Siping, LI Dan, WU Wanbo. Construction and analysis of preoperative lymph node metastasis load model of breast cancer patients based on dual-mode ultrasound[J]. Chinese Journal of General Practice, 2024, 22(4): 646-650. doi: 10.16766/j.cnki.issn.1674-4152.003471 |
[1] |
KATSURA C, OGUNMWONYI I, KANKM H K, et al. Breast cancer: presentation, investigation and management[J]. Br J Hosp Med(Lond), 2022, 83(2): 1-7.
|
[2] |
MARINO M A, AVENDNO D, ZAPATA P, et al. Lymph node imaging in patients with primary breast cancer: concurrent diagnostic tools[J]. Oncologist, 2020, 25(2): e231-e242. doi: 10.1634/theoncologist.2019-0427
|
[3] |
GU J, TONG T, XU D, et al. Deep learning radiomics of ultrasonography for comprehensively predicting tumor and axillary lymph node status after neoadjuvant chemotherapy in breast cancer patients: a multicenter study[J]. Cancer, 2023, 129(3): 356-366. doi: 10.1002/cncr.34540
|
[4] |
SONG B I. A machine learning-based radiomics model for the prediction of axillary lymph-node metastasis in breast cancer[J]. Breast Cancer, 2021, 28(3): 664-671. doi: 10.1007/s12282-020-01202-z
|
[5] |
GRADISHAR W J, MORAN M S, ABRAHAM J, et al. Breast cancer, version 3.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(6): 691-722. doi: 10.6004/jnccn.2022.0030
|
[6] |
中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2019年版)[J]. 中国癌症杂志, 2019, 29(8): 609-679. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGAZ202312004.htm
|
[7] |
American Institute of Ultrasound in Medicine, American Society of Breast Surgeons. AIUM practice guideline for the performance of a breast ultrasound examination[J]. J Ultrasound Med, 2009, 28(1): 105-109. doi: 10.7863/jum.2009.28.1.105
|
[8] |
LAOHAWIRIYAKAMOL S, MHTTNOBON S, PUTTAWIBUL P. Intraoperative molecular analysis of total tumor load in sentinel lymph node: a predictor of axillary status in early breast cancer[J]. Asian Pac J Cancer Prev, 2022, 23(1): 349-354. doi: 10.31557/APJCP.2022.23.1.349
|
[9] |
SHI J Y, WANG X, DING G Y, et al. Exploring prognostic indicators in the pathological images of hepatocellular carcinoma based on deep learning[J]. Gut, 2021, 70(5): 951-961. doi: 10.1136/gutjnl-2020-320930
|
[10] |
ZHU W, XIE L, HAN J, et al. The application of deep learning in cancer prognosis prediction[J]. Cancers (Basel), 2020, 12(3): 603. doi: 10.3390/cancers12030603
|
[11] |
王莹, 崔颖颖, 王鑫慧, 等. 基于磁共振超短回波时间序列的影像组学模型预测非小细胞肺癌淋巴结转移[J]. 磁共振成像, 2023, 14(3): 17-20, 41. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202303004.htm
WANG Y, CUI Y Y, WANG X H, et al. 3D-ultrashort echo time MRI-based radiomics model facilitates the assessment of lymph node metastasis in non-small cell lung cancer[J]. Chinese Journal of Magnetic Resonance Imaging, 2023, 14(3): 17-20, 41. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202303004.htm
|
[12] |
胡文娟, 宋彬, 谢晓利, 等. 多参数磁共振组学预测甲状腺乳头状癌淋巴结转移的价值[J]. 放射学实践, 2023, 38(7): 863-867. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS202307009.htm
HU W J, SING B, XIE X L, et al. Radiomics based on multiparametric MRI for preoperative prediction of lymph node metastasis in papillary thyroid carcinoma[J]. Radiologic Practice, 2023, 38(7): 863-867. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS202307009.htm
|
[13] |
姚晓倩, 洪敏萍, 蔡宏杰, 等. 基于超声影像组学术前预测浸润性乳腺癌患者腋窝淋巴结状态[J]. 现代实用医学, 2023, 35(1): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-NBYX202301037.htm
YAO X Q, HONG M P, CAI H J, et al. Prediction of axillary lymph node status in patients with invasive breast cancer based on pre-academic ultrasound imaging group[J]. Modern Practical Medicine, 2023, 35(1): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-NBYX202301037.htm
|
[14] |
刘晗, 徐楠, 吴杰, 等. 基于灰阶超声联合剪切波弹性成像的影像组学模型诊断乳腺癌腋窝淋巴结转移的临床价值[J]. 临床超声医学杂志, 2023, 25(4): 277-283. https://www.cnki.com.cn/Article/CJFDTOTAL-LCCY202304007.htm
LIU H, XU N, WU J, et al. Clinical value of bimodal radiomics model based on gray-scale ultrasound combined with shear wave elastography in the diagnosis of axillary lymph node metastasis of breast cancer[J]. Journal of Clinical Ultrasound in Medicine, 2023, 25(4): 277-283. https://www.cnki.com.cn/Article/CJFDTOTAL-LCCY202304007.htm
|
[15] |
ZHU Y, ZHUO W, JIA X H, et al. Preoperative axillary ultrasound in the selection of patients with a heavy axillary tumor burden in early-stage breast cancer: what leads to false-positive results?[J]. J Ultrasound Med, 2018, 37(6): 1357-1365. doi: 10.1002/jum.14545
|
[16] |
PATEL B K, SMREEN N, ZHUO Y, et al. MR elastography of the breast: evolution of technique, case examples, and future directions[J]. Clin Breast Cancer, 2021, 21(1): e102-e111. doi: 10.1016/j.clbc.2020.08.005
|
[17] |
陈佳佳, 孟利伟, 李星云. 乳腺癌超声特征和ER、PR、CerbB-2、Ki-67阳性表达的相关性研究[J]. 中华全科医学, 2021, 19(10): 1721-1724. doi: 10.16766/j.cnki.issn.1674-4152.002151
CHEN J J, MENG L W, LI X Y. Relationship between ultrasound features and expression of ER, PR, CerbB-2 and Ki-67 in breast cancer[J]. Chinese Journal of General Practice, 2021, 19(10): 1721-1724. doi: 10.16766/j.cnki.issn.1674-4152.002151
|