Citation: | TAN Chenlei, LI Yanhua. The role of adipocytokines in ovarian senescence[J]. Chinese Journal of General Practice, 2024, 22(4): 661-664. doi: 10.16766/j.cnki.issn.1674-4152.003474 |
[1] |
PARK S U, WALSH L, BERKOWITZ K M. Mechanisms of ovarian aging[J]. Reproduction, 2021, 162(2): R19-R33. doi: 10.1530/REP-21-0022
|
[2] |
TELFER E E, GROSBOIS J, ODEY Y L, et al. Making a good egg: human oocyte health, aging, and in vitro development[J]. Physiol Rev, 2023, 103(4): 2623-2677. doi: 10.1152/physrev.00032.2022
|
[3] |
CAVALCANTE M B, SAMPAIO O G M, CÂMARA F E A, et al. Ovarian aging in humans: potential strategies for extending reproductive lifespan[J]. Geroscience, 2023, 45(4): 2121-2133. doi: 10.1007/s11357-023-00768-8
|
[4] |
WANG X, WANG L, XIANG W. Mechanisms of ovarian aging in women: a review[J]. J Ovarian Res, 2023, 16(1): 67. DOI: 10.1186/s13048-023-01151-z.
|
[5] |
余晓燕, 王烈宏, 杨惠林, 等. EZH2在卵巢颗粒细胞氧化应激反应诱导子宫内膜异位症相关不孕中的作用[J]. 中华全科医学, 2022, 20(11): 1836-1840, 1877. doi: 10.16766/j.cnki.issn.1674-4152.002714?viewType=HTML
YU X Y, WANG L H, YANG H L, et al. Role of EZH2 in endometriosis-related infertility induced by oxidative stress in ovarian granulosa cells[J]. Chinese Journal of General Practice, 2022, 20(11): 1836-1840, 1877. doi: 10.16766/j.cnki.issn.1674-4152.002714?viewType=HTML
|
[6] |
KASAPOǦLU I, SELI E. Mitochondrial dysfunction and ovarian aging[J]. Endocrinology, 2020, 161(2): bqaa001. DOI: 10.1210/endocr/bqaa001.
|
[7] |
ESTIENNE A, BROSSAUD A, REVERCHON M, et al. Adipokines expression and effects in oocyte maturation, fertilization and early embryo development: lessons from mammals and birds[J]. Int J Mol Sci, 2020, 21(10): 3581. DOI: 10.3390/ijms21103581.
|
[8] |
CHILDS G V, ODLE A K, MACNICOL M C, et al. The Importance of Leptin to reproduction[J]. Endocrinology, 2021, 162(2): bqaa204. DOI: 10.1210/endocr/bqaa204.
|
[9] |
HONG K J, LIN J J, LIN L H, et al. The intrafollicular concentration of leptin as a potential biomarker to predict oocyte maturity in in-vitro fertilization[J]. Sci Rep, 2022, 12(1): 19573. DOI: 10.1038/s41598-022-23737-1.
|
[10] |
JAFARPOUR S, KHOSRAVI S, JANGHORBANI M, et al. Association of serum and follicular fluid leptin and in vitro Fertilization/ICSI outcome: a systematic review and meta-analysis[J]. J Gynecol Obstet Hum Reprod, 2021, 50(6): 101924. DOI: 10.1016/j.jogoh.2020.101924.
|
[11] |
MACEDO T J S, MENEZES V G, BARBERINO R S, et al. Leptin decreases apoptosis and promotes the activation of primordial follicles through the phosphatidylinositol-3-kinase/protein kinase B pathway in cultured ovine ovarian tissue[J]. Zygote, 2021, 29(6): 445-451. doi: 10.1017/S0967199421000034
|
[12] |
WOŁODKO K, CASTILLO-FERNANDEZ J, KELSEY G, et al. Revisiting the impact of local Leptin signaling in folliculogenesis and oocyte maturation in obese mothers[J]. Int J Mol Sci, 2021, 22(8): 4270. DOI: 10.3390/ijms22084270.
|
[13] |
OBRADOVIC M, SUDAR-MILOVANOVIC E, SOSKIC S, et al. Leptin and obesity: role and clinical implication[J]. Front Endocrinol (Lausanne), 2021, 12(18): 585887. DOI: 10.3389/fendo.2021.585887.
|
[14] |
GRECO M, DE SANTO M, COMANDÈ A, et al. Leptin-activity modulators and their potential pharmaceutical applications[J]. Biomolecules, 2021, 11(7): 1045. DOI: 10.3390/biom11071045.
|
[15] |
丁芳, 易晓芳. 血清抗苗勒管激素和胰岛素样生长因子-1与多囊卵巢综合征的相关研究[J]. 中国临床研究, 2022, 35(12): 1658-1661. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCK202212005.htm
DING F, YI X F. Associations of serum anti-Müllerian hormone and insulin-like growth factor-1 with polycystic ovary syndrome[J]. Chinese Journal of Clinical Research, 2022, 35(12): 1658-1661. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCK202212005.htm
|
[16] |
WANG Y Y, HUNG A C, LO S, et al. Adipocytokines visfatin and resistin in breast cancer: clinical relevance, biological mechanisms, and therapeutic potential[J]. Cancer Lett, 2021, 498(1): 229-239.
|
[17] |
WNUK A, STANGRET A, WATROBA M, et al. Can adipokine visfatin be a novel marker of pregnancy-related disorders in women with obesity?[J]. Obes Rev, 2020, 21(7): e13022. DOI: 10.1111/obr.13022.
|
[18] |
LIN T C. Updated functional roles of NAMPT in carcinogenesis and therapeutic niches[J]. Cancers (Basel), 2022, 14(9): 2059. doi: 10.3390/cancers14092059
|
[19] |
PARK B K, PARK M J, KIM H G, et al. Role of visfatin in restoration of ovarian aging and fertility in the mouse aged 18 months[J]. Reprod Sci, 2020, 27(2): 681-689. doi: 10.1007/s43032-019-00074-9
|
[20] |
WANG H, ZHU S, WU X, et al. NAMPT reduction-induced NAD+ insufficiency contributes to the compromised oocyte quality from obese mice[J]. Aging Cell, 2021, 20(11): e13496. DOI: 10.1111/acel.13496.
|
[21] |
ZHUAN Q, LI J, DU X, et al. Nampt affects mitochondrial function in aged oocytes by mediating the downstream effector FoxO3a[J]. J Cell Physiol, 2022, 237(1): 647-659. doi: 10.1002/jcp.30532
|
[22] |
STEPIEŃ S, OLCZYK P, GOLA J, et al. The role of selected adipocytokines in ovarian cancer and endometrial cancer[J]. Cells, 2023, 12(8): 1118. DOI: 10.3390/cells12081118.
|
[23] |
CHOI H M, DOSS H M, KIM K S. Multifaceted physiological roles of Adiponectin in inflammation and diseases[J]. Int J Mol Sci, 2020, 21(4): 1219. DOI: 10.3390/ijms21041219.
|
[24] |
ZHU Q, LI Y, MA J, et al. Potential factors result in diminished ovarian reserve: a comprehensive review[J]. J Ovarian Res, 2023, 16(1): 208. doi: 10.1186/s13048-023-01296-x
|
[25] |
JURCZEWSKA J, OSTROWSKA J, CHEŁCHOWSKA M, et al. Physical activity, rather than diet, is linked to lower insulin resistance in PCOS women-a case-control study[J]. Nutrients, 2023, 15(9): 2111. DOI: 10.3390/nu15092111.
|
[26] |
GRANDHAYE J, HMADEH S, PLOTTON I, et al. The adiponectin agonist, AdipoRon, inhibits steroidogenesis and cell proliferation in human luteinized granulosa cells[J]. Mol Cell Endocrinol, 2021, 520(15): 111080. DOI: 10.1016/j.mce.2020.111080.
|
[27] |
NIKANFAR S, OGHBAEI H, RASTGAR REZAEI Y, et al. Role of adipokines in the ovarian function: oogenesis and steroidogenesis[J]. J Steroid Biochem Mol Biol, 2021, 209: 105852. DOI: 10.1016/j.jsbmb.2021.105852.
|
[28] |
DA SILVA ROSA C, LIU M, SWEENEY G. Adiponectin synthesis, secretion and extravasation from circulation to interstitial space[J]. Physiology (Bethesda), 2021, 36(3): 134-149.
|
[29] |
PEI X, LI H, YU H, et al. APN expression in serum and corpus luteum: Regulation of luteal steroidogenesis is possibly dependent on the AdipoR2/AMPK pathway in goats[J]. Cells, 2023, 12(10): 1393. doi: 10.3390/cells12101393
|
[30] |
于婷乔, 刘艺芳, 袁庆叶, 等. 脂联素对KGN细胞雌激素合成和氧化应激的影响[J]. 生殖医学杂志, 2022, 31(10): 1403-1409. doi: 10.3969/j.issn.1004-3845.2022.10.014
YU T Q, LIU Y F, YUAN Q Y, et al. Effects of adiponectin on estrogen synthesis and oxidative stress in KGN cells[J]. Journal of Reproductive Medicine, 2022, 31(10): 1403-1409. doi: 10.3969/j.issn.1004-3845.2022.10.014
|
[31] |
CAO Y, YANG M, SONG J, et al. Dietary protein regulates female estrous cyclicity partially via fibroblast growth factor 21[J]. Nutrients, 2023, 15(13): 3049. doi: 10.3390/nu15133049
|
[32] |
ZHANG H, FANG Y, GAO Y, et al. Brown adipose tissue-derived exosomes delay fertility decline in aging mice[J]. Front Endocrinol (Lausanne), 2023, 14(25): 1180104. DOI: 10.3389/fendo.2023.1180104.
|
[33] |
SŁABUSZEWSKA-JÓŹWIAK A, LUKASZUK A, JANICKA-KOŚNIK M, et al. Role of leptin and adiponectin in endometrial cancer[J]. Int J Mol Sci, 2022, 23(10): 5307. DOI: 10.3390/ijms23105307.
|
[34] |
HUANG W Y, CHEN D R, KOR C T, et al. Relationships between follicle-stimulating hormone and adiponectin in postmenopausal women[J]. Metabolites, 2020, 10(10): 420. doi: 10.3390/metabo10100420
|
[35] |
WANG Y, HUANG R, LI X, et al. High concentration of chemerin caused by ovarian hyperandrogenism may lead to poor IVF outcome in polycystic ovary syndrome: a pilot study[J]. Gynecol Endocrinol, 2019, 35(12): 1072-1077. doi: 10.1080/09513590.2019.1622087
|
[36] |
SCHÜLER-TOPRAK S, ORTMANN O, BUECHLER C, et al. The complex roles of adipokines in polycystic ovary syndrome and endometriosis[J]. Biomedicines, 2022, 10(10): 2503. DOI: 10.3390/biomedicines10102503.
|
[37] |
LLIBEROS C, LIEW S H, ZAREIE P, et al. Evaluation of inflammation and follicle depletion during ovarian ageing in mice[J]. Sci Rep, 2021, 11(1): 278. doi: 10.1038/s41598-020-79488-4
|
[38] |
WINSHIP A L, ALESI L R, SANT S, et al. Checkpoint inhibitor immunotherapy diminishes oocyte number and quality in mice[J]. Nat Cancer, 2022, 3(8): 1-13. doi: 10.1038/s43018-022-00413-x
|
[39] |
刘秀, 陈欢, 许芩, 等. 多囊卵巢综合征与炎症因子的研究进展[J]. 中国现代医生, 2023, 61(33): 115-118. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYS202333030.htm
LIU X, CHEN H, XU Q, et al. Research progress of polycystic ovary syndrome and inflammatory factors[J]. China Modern Doctor, 2023, 61(33): 115-118. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYS202333030.htm
|
[40] |
BOUET P E, CHAO DE LA BARCA J M, BOUCRET L, et al. Elevated levels of Monocyte Chemotactic Protein-1 in the follicular fluid reveals different populations among women with severe endometriosis[J]. J Clin Med, 2020, 9(5): 1306. DOI: 10.3390/jcm9051306.
|
[41] |
ASEMOTA O, THORNTON K, MERHI Z, et al. Monocyte chemotactic protein-1 plays a role in ovarian dysfunction related to high-fat diet-induced obesity[J]. Syst Biol Reprod Med, 2020, 66(4): 236-243. doi: 10.1080/19396368.2020.1780649
|
[42] |
SHIN J W, LEE E, HAN S, et al. Plasma proteomic signature of cellular senescence and markers of biological aging among postmenopausal women[J]. Rejuvenation Res, 2022, 25(3): 141-148. doi: 10.1089/rej.2022.0024
|