Volume 22 Issue 5
May  2024
Turn off MathJax
Article Contents
DENG Tianyu, WANG Xiaoyan. The role of GSDME-dependent pyroptosis in renal diseases[J]. Chinese Journal of General Practice, 2024, 22(5): 845-849. doi: 10.16766/j.cnki.issn.1674-4152.003517
Citation: DENG Tianyu, WANG Xiaoyan. The role of GSDME-dependent pyroptosis in renal diseases[J]. Chinese Journal of General Practice, 2024, 22(5): 845-849. doi: 10.16766/j.cnki.issn.1674-4152.003517

The role of GSDME-dependent pyroptosis in renal diseases

doi: 10.16766/j.cnki.issn.1674-4152.003517
Funds:

 81970605

  • Received Date: 2023-11-09
    Available Online: 2024-07-20
  • Pyroptosis is a newly discovered form of programmed cell death that relies on caspase-1 and inflammasome activation to initiate the cell death process. This pathway is characterized by compromised membrane integrity and the release of numerous pro-inflammatory factors. Gasdermin E (GSDME), a member of the gasdermin family, plays a pivotal role in pyroptosis induction. It is widely expressed in normal tissues and can convert apoptosis into pyroptosis. Kidney diseases pose significant health risks to humans. In recent years, researchers have gradually revealed and confirmed the involvement of GSDME-dependent pyroptosis in the pathogenesis of kidney diseases. A comprehensive understanding of the role of GSDME-dependent pyroptosis in renal disease will facilitate the identification of novel targets for diagnosing and treatment. To provide valuable references for clinical and basic researchers, we present a review and summary of studies investigating the association between GSDME-dependent pyroptosis and renal diseases, including acute kidney injuries, diabetic nephropathy, renal carcinoma, obstructive nephropathy, and lupus glomerulonephritis.

     

  • loading
  • [1]
    DUBYAK G R, MILLER B A, PEARLMAN E. Pyroptosis in neutrophils: multimodal integration of inflammasome and regulated cell death signaling pathways[J]. Immunol Rev, 2023, 314(1): 229-249. doi: 10.1111/imr.13186
    [2]
    BURDETTE B E, ESPARZA A N, ZHU H, et al. Gasdermin D in pyroptosis[J]. Acta Pharm Sin B, 2021, 11(9): 2768-2782. doi: 10.1016/j.apsb.2021.02.006
    [3]
    WEN S, WANG Z H, ZHANG C X, et al. Caspase-3 promotes diabetic kidney disease through Gasdermin E-mediated progression to secondary necrosis during apoptosis[J]. Diabetes Metab Syndr Obes, 2020, 13(10): 313-323.
    [4]
    CHAI Q Y, YU S S, ZHONG Y Z, et al. A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin[J]. Science, 2022, 378(6616): eabq0132. DOI: 10.1126/science.abq0132.
    [5]
    BARNETT K C, LI S R, LIANG K X, et al. A 360° view of the inflammasome: mechanisms of activation, cell death, and diseases[J]. Cell, 2023, 186(11): 2288-2312. doi: 10.1016/j.cell.2023.04.025
    [6]
    XIA S Y, ZHANG Z B, MAGUPALLI V G, et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1[J]. Nature, 2021, 593(7860): 607-611. doi: 10.1038/s41586-021-03478-3
    [7]
    KUMARI P, VASUDEVAN S O, RUSSO A J, et al. Host extracellular vesicles confer cytosolic access to systemic LPS licensing non-canonical inflammasome sensing and pyroptosis[J]. Nat Cell Biol, 2023, 25(12): 1860-1872. doi: 10.1038/s41556-023-01269-8
    [8]
    ZHANG X W, ZHANG P, AN L, et al. Miltirone induces cell death in hepatocellular carcinoma cell through GSDME-dependent pyroptosis[J]. Acta Pharm Sin B, 2020, 10(8): 1397-1413. doi: 10.1016/j.apsb.2020.06.015
    [9]
    MA F X, GHIMIRE L, REN Q, et al. Gasdermin E dictates inflammatory responses by controlling the mode of neutrophil death[J]. Nat Commun, 2024, 15(1): 386. DOI: 10.1038/s41467-023-44669-y.
    [10]
    KANG L L, DAI J H, WANG Y F, et al. Blocking Caspase-1/Gsdmd and Caspase-3/-8/Gsdme pyroptotic pathways rescues silicosis in mice[J]. PLoS Genet, 2022, 18(12): e1010515. DOI: 10.1371/journal.pgen.1010515.
    [11]
    HU Y Q, WEN Q L, CAI Y F, et al. Alantolactone induces concurrent apoptosis and GSDME-dependent pyroptosis of anaplastic thyroid cancer through ROS mitochondria-dependent caspase pathway[J]. Phytomedicine, 2023, 108(1): 154528. DOI: 10.1016/j.phymed.2022.154528.
    [12]
    WEI Y Y, LAN B D, ZHENG T, et al. GSDME-mediated pyroptosis promotes the progression and associated inflammation of atherosclerosis[J]. Nat Commun, 2023, 14(1): 929. DOI: 10.1038/s41467-023-36614-w.
    [13]
    NEEL D V, BASU H, GUNNER G, et al. Gasdermin-E mediates mitochondrial damage in axons and neurodegeneration[J]. Neuron, 2023, 111(8): 1222-1240. e9. DOI: 10.1016/j.neuron.2023.02.019.
    [14]
    REN C X, BAO X W, LU X Z, et al. Complanatoside A targeting NOX4 blocks renal fibrosis in diabetic mice by suppressing NLRP3 inflammasome activation and autophagy[J]. Phytomedicine, 2022, 104(9): 154310. DOI: 10.1016/j.phymed.2022.154310.
    [15]
    韩振元, 王晓燕. cGAS-STING通路在肾脏疾病中的研究进展[J]. Chinese Journal of General Practice, 2023, 21(12): 2119-2123. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY202312030.htm
    [16]
    SEARS S M, SISKIND L J. Potential therapeutic targets for cisplatin-induced kidney injury: lessons from other models of AKI and fibrosis[J]. J Am Soc Nephrol, 2021, 32(7): 1559-1567. doi: 10.1681/ASN.2020101455
    [17]
    SHEN X J, WANG H B, WENG C H, et al. Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity[J]. Cell Death Dis, 2021, 12(2): 186. DOI: 10.1038/s41419-021-03458-5.
    [18]
    XIA W W, LI Y Y, WU M Y, et al. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation[J]. Cell Death Dis, 2021, 12(2): 139. DOI: 10.1038/s41419-021-03431-2.
    [19]
    AI Y L, WANG W J, LIU F J, et al. Mannose antagonizes GSDME-mediated pyroptosis through AMPK activated by metabolite GlcNAc-6P[J]. Cell Res, 2023, 33(12): 904-922. doi: 10.1038/s41422-023-00848-6
    [20]
    WANG Z, GU Z Y, HOU Q, et al. Zebrafish GSDMEb cleavage-gated pyroptosis drives septic acute kidney injury in vivo[J]. J Immunol, 2020, 204(7): 1929-1942. doi: 10.4049/jimmunol.1901456
    [21]
    DING Z H, ZHAO J, WANG X F, et al. Total extract of Abelmoschus manihot L. alleviates uric acid-induced renal tubular epithelial injury via inhibition of caspase-8/caspase-3/NLRP3/GSDME signaling[J]. Front Pharmacol, 2022, 13(8): 907980. DOI: 10.3389/fphar.2022.907980.
    [22]
    ZHANG C Y, WANG X R, NIE G H, et al. In vivo assessment of molybdenum and cadmium co-induce nephrotoxicity via NLRP3/Caspase-1-mediated pyroptosis in ducks[J]. J Inorg Biochem, 2021, 224(11): 111584. DOI: 10.1016/j.jinorgbio.2021.111584.
    [23]
    SHENG Y T, ZHANG C P, CAI D D, et al. 2, 2 ', 4, 4 ' -Tetrabromodiphenyl ether and cadmium co-exposure activates aryl hydrocarbon receptor pathway to induce ROS and GSDME-dependent pyroptosis in renal tubular epithelial cells[J]. Environ Toxicol, 2024, 39(1): 289-298. doi: 10.1002/tox.23957
    [24]
    LIU W N, GAN Y J, DING Y, et al. Autophagy promotes GSDME-mediated pyroptosis via intrinsic and extrinsic apoptotic pathways in cobalt chloride-induced hypoxia reoxygenation-acute kidney injury[J]. Ecotoxicol Environ Saf, 2022, 242(7): 113881. DOI: 10.1016/j.ecoenv.2022.113881.
    [25]
    LI S Y, FENG L F, LI G R, et al. GSDME-dependent pyroptosis signaling pathway in diabetic nephropathy[J]. Cell Death Discov, 2023, 9(1): 156. DOI: 10.1038/s41420-023-01452-8.
    [26]
    WU M Y, XIA W W, JIN Q Q, et al. Gasdermin E deletion attenuates ureteral obstruction- and 5/6 nephrectomy-induced renal fibrosis and kidney dysfunction[J]. Front Cell Dev Biol, 2021, 9(10): 754134. DOI: 10.3389/fcell.2021.754134.
    [27]
    LUO G H, HE Y, YANG F Y, et al. Blocking GSDME-mediated pyroptosis in renal tubular epithelial cells alleviates disease activity in lupus mice[J]. Cell Death Discov, 2022, 8(1): 113. DOI: 10.1038/s41420-022-00848-2.
    [28]
    YAO L, LI J N, XU Z J, et al. GSDMs are potential therapeutic targets and prognostic biomarkers in clear cell renal cell carcinoma[J]. Aging (Albany NY), 2022, 14(6): 2758-2774.
    [29]
    LI Y S, YUAN Y, HUANG Z X, et al. GSDME-mediated pyroptosis promotes inflammation and fibrosis in obstructive nephropathy[J]. Cell Death Differ, 2021, 28(8): 2333-2350. doi: 10.1038/s41418-021-00755-6
    [30]
    ZHANG Y, YIN K, WANG D X, et al. Polystyrene microplastics-induced cardiotoxicity in chickens via the ROS-driven NF-κB-NLRP3-GSDMD and AMPK-PGC-1α axes[J]. Sci Total Environ, 2022, 840(9): 156727. DOI: 10.1016/j.scitotenv.2022.156727.
    [31]
    WU M, YANG Z F, ZHANG C Y, et al. Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy[J]. Metabolism, 2021, 118(3): 154748. DOI: 10.1016/j.metabol.2021.154748.
    [32]
    HAGMANN H, KHAYYAT N H, MATIN M, et al. Capsazepine (CPZ) inhibits TRPC6 conductance and is protective in adriamycin-induced nephropathy and diabetic glomerulopathy[J]. Cells, 2023, 12(2): 271. DOI: 10.3390/cells12020271.
    [33]
    ZHAI Z Q, YANG F Y, XU W C, et al. Attenuation of rheumatoid arthritis through the inhibition of tumor necrosis factor-induced Caspase 3/Gasdermin E-Mediated pyroptosis[J]. Arthritis Rheumatol, 2022, 74(3): 427-440. doi: 10.1002/art.41963
    [34]
    ZHANG B L, YU P, SU E Y, et al. Inhibition of GSDMD activation by Z-LLSD-FMK or Z-YVAD-FMK reduces vascular inflammation and atherosclerotic lesion development in ApoE-/- mice[J]. Front Pharmacol, 2023, 14(8): 1184588. DOI: 10.3389/fphar.2023.1184588.
    [35]
    FIROOZPOUR L, GAO L, MOGHIMI S, et al. Efficient synthesis, biological evaluation, and docking study of isatin based derivatives as caspase inhibitors[J]. J Enzyme Inhib Med Chem, 2020, 35(1): 1674-1684. doi: 10.1080/14756366.2020.1809388
    [36]
    XU W F, ZHANG Q, DING C J, et al. Gasdermin E-derived caspase-3 inhibitors effectively protect mice from acute hepatic failure[J]. Acta Pharmacol Sin, 2021, 42(1): 68-76. doi: 10.1038/s41401-020-0434-2
    [37]
    ZHANG X M, XIE L, LONG J Y, et al. Salidroside: a review of its recent advances in synthetic pathways and pharmacological properties[J]. Chem Biol Interact, 2021, 339(3): 109268. DOI: 10.1016/j.cbi.2020.109268.
    [38]
    WANG X H, QIAN J, MENG Y, et al. Salidroside ameliorates severe acute pancreatitis-induced cell injury and pyroptosis by inactivating Akt/NF-κB and caspase-3/GSDME pathways[J]. Heliyon, 2023, 9(2): e13225. DOI: 10.1016/j.heliyon.2023.e13225.
    [39]
    HU L, CHEN M, CHEN X R, et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate[J]. Cell Death Dis, 2020, 11(4): 281. DOI: 10.1038/s41419-020-2476-2.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (34) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return