Citation: | WANG Jiwen, CHEN Xing, DAI Huihua. Research progress of non-coding RNAs in intrauterine adhesion[J]. Chinese Journal of General Practice, 2024, 22(5): 855-858. doi: 10.16766/j.cnki.issn.1674-4152.003519 |
[1] |
CAPMAS P, MIHALACHE A, DUMINIL L, et al. Intrauterine adhesions: what is the pregnancy rate after hysteroscopic management?[J]. J Gynecol Obstet Hum Reprod, 2020, 49(7): 101797. DOI: 10.1016/j.jogoh.2020.101797.
|
[2] |
蒙思林, 袁瑞. 重度宫腔粘连术后预防再粘连的方法研究进展[J]. 现代医药卫生, 2016, 32(13): 2004-2006. https://www.cnki.com.cn/Article/CJFDTOTAL-XYWS201613017.htm
MENG S L, YUAN R. Research progress on prevention of re-adhesion after surgery for severe intrauterine adhesion[J]. Journal of Modern Medicine & Health, 2016, 32(13): 2004-2006. https://www.cnki.com.cn/Article/CJFDTOTAL-XYWS201613017.htm
|
[3] |
LU T X, ROTHENBERG M E. MicroRNA[J]. J Allergy Clin Immunol, 2018, 141(4): 1202-1207. doi: 10.1016/j.jaci.2017.08.034
|
[4] |
LIU X, XU Q, CHEN C, et al. miR-543 inhibits the occurrence and development of intrauterine adhesion by inhibiting the proliferation, migration, and invasion of endometrial cells[J]. Biomed Res Int, 2021, 2021: 5559102. DOI: 10.1155/2021/5559102.
|
[5] |
LIU X, DUAN H, ZHANG H H, et al. Integrated data set of microRNAs and mRNAs involved in severe intrauterine adhesion[J]. Reprod Sci, 2016, 23(10): 1340-1347. doi: 10.1177/1933719116638177
|
[6] |
YUAN D, GUO T, QIAN H, et al. Exosomal miR-543 derived from umbilical cord mesenchymal stem cells ameliorates endometrial fibrosis in intrauterine adhesion via downregulating N-cadherin[J]. Placenta, 2023, 131: 75-81. doi: 10.1016/j.placenta.2022.11.013
|
[7] |
YANG P, WU Z, MA C, et al. Endometrial miR-543 is downregulated during the implantation window in women with endometriosis-related infertility[J]. Reprod Sci, 2019, 26(7): 900-908. doi: 10.1177/1933719118799199
|
[8] |
DAS S, KUMAR M, NEGI V, et al. MicroRNA-326 regulates profibrotic functions of transforming growth factor-β in pulmonary fibrosis[J]. Am J Respir Cell Mol Biol, 2014, 50(5): 882-892. doi: 10.1165/rcmb.2013-0195OC
|
[9] |
NING J, ZHANG H, YANG H. MicroRNA-326 inhibits endometrial fibrosis by regulating TGF-β1/Smad3 pathway in intrauterine adhesions[J]. Mol Med Rep, 2018, 18(2): 2286-2292.
|
[10] |
CALVENTE C J, TAMEDA M, JOHNSON C D, et al. Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223[J]. J Clin Invest, 2019, 129(10): 4091-4109. doi: 10.1172/JCI122258
|
[11] |
CHEN Y, SUN D, SHANG D, et al. miR-223-3p alleviates TGF-β-induced epithelial-mesenchymal transition and extracellular matrix deposition by targeting SP3 in endometrial epithelial cells[J]. Open Med (Wars), 2022, 17(1): 518-526. doi: 10.1515/med-2022-0424
|
[12] |
LIU Y, ZHANG S, XUE Z, et al. Bone mesenchymal stem cells-derived miR-223-3p-containing exosomes ameliorate lipopolysaccharide-induced acute uterine injury via interacting with endothelial progenitor cells[J]. Bioengineered, 2021, 12(2): 10654-10665. doi: 10.1080/21655979.2021.2001185
|
[13] |
XIAO J, MENG X M, HUANG X R, et al. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice[J]. Mol Ther, 2012, 20(6): 1251-1260. doi: 10.1038/mt.2012.36
|
[14] |
LI J, DU S, SHENG X, et al. MicroRNA-29b inhibits endometrial fibrosis by regulating the Sp1-TGF-β1/Smad-CTGF axis in a rat model[J]. Reprod Sci, 2016, 23(3): 386-394. doi: 10.1177/1933719115602768
|
[15] |
TAN Q, XIA D, YING X. miR-29a in exosomes from bone marrow mesenchymal stem cells inhibit fibrosis during endometrial repair of intrauterine adhesion[J]. Int J Stem Cells, 2020, 13(3): 414-423. doi: 10.15283/ijsc20049
|
[16] |
SUN Y, WANG H, LI Y, et al. miR-24 and miR-122 negatively regulate the transforming growth factor-β/Smad sgnaling pathway in skeletal muscle fibrosis[J]. Mol Ther Nucleic Acids, 2018, 11: 528-537. doi: 10.1016/j.omtn.2018.04.005
|
[17] |
NAKAMURA M, KANDA T, JIANG X, et al. Serum microRNA-122 and Wisteria floribunda agglutinin-positive Mac-2 binding protein are useful tools for liquid biopsy of the patients with hepatitis B virus and advanced liver fibrosis[J]. PLoS One, 2017, 12(5): e0177302. DOI: 10.1371/journal.pone.0177302.
|
[18] |
CHEN S, MA Y, QIU X, et al. MicroRNA-122-5p alleviates endometrial fibrosis via inhibiting the TGF-β/SMAD pathway in Asherman' s syndrome[J]. Reprod Biomed Online, 2023, 47(5): 103253. DOI: 10.1016/j.rbmo.2023.06.008.
|
[19] |
LIU M, ZHAO D, WU X, et al. miR-466 and NUS1 regulate the AKT/Nuclear Factor kappa B (NFκB) signaling pathway in intrauterine adhesions in a rat model[J]. Med Sci Monit, 2019, 25: 4094-4103. doi: 10.12659/MSM.914202
|
[20] |
SUN D, JIANG Z, CHEN Y, et al. MiR-455-5p upregulation in umbilical cord mesenchymal stem cells attenuates endometrial injury and promotes repair of damaged endometrium via Janus kinase/signal transducer and activator of transcription 3 signaling[J]. Bioengineered, 2021, 12(2): 12891-12904. doi: 10.1080/21655979.2021.2006976
|
[21] |
XU J, TAN Y L, LIU Q Y, et al. Quercetin regulates fibrogenic responses of endometrial stromal cell by upregulating miR-145 and inhibiting the TGF-β1/Smad2/Smad3 pathway[J]. Acta Histochem, 2020, 122(7): 151600. DOI: 10.1016/j.acthis.2020.151600.
|
[22] |
TAGASHIRA T, FUKUDA T, MIYATA M, et al. Afadin facilitates vascular endothelial growth factor-induced network formation and migration of vascular endothelial cells by inactivating Rho-Associated Kinase through ArhGAP29[J]. Arterioscler Thromb Vasc Biol, 2018, 38(5): 1159-1169. doi: 10.1161/ATVBAHA.118.310991
|
[23] |
XU Q, DUAN H, GAN L, et al. MicroRNA-1291 promotes endometrial fibrosis by regulating the ArhGAP29-RhoA/ROCK1 signaling pathway in a murine model[J]. Mol Med Rep, 2017, 16(4): 4501-4510. doi: 10.3892/mmr.2017.7210
|
[24] |
YAO R W, WANG Y, CHEN L L. Cellular functions of long noncoding RNAs[J]. Nat Cell Biol, 2019, 21(5): 542-551. doi: 10.1038/s41556-019-0311-8
|
[25] |
SHAO X, QIN J, WAN C, et al. ADSC Exosomes mediate lncRNA-MIAT alleviation of endometrial fibrosis by regulating miR-150-5p[J]. Front Genet, 2021, 12: 679643. DOI: 10.3389/fgene.2021.679643.
|
[26] |
GUO C, QI Y, QU J, et al. Pathophysiological functions of the lncRNA TUG1[J]. Curr Pharm Des, 2020, 26(6): 688-700. doi: 10.2174/1381612826666191227154009
|
[27] |
YUAN B, WANG W, ZHAO H, et al. Role of lncRNA TUG1 in adenomyosis and its regulatory mechanism in endometrial epithelial cell functions[J]. Endocrinology, 2022, 163(5): bqac033. DOI: 10.1210/endocr/bqac033.
|
[28] |
AI Y, CHEN M, LIU J, et al. lncRNA TUG1 promotes endometrial fibrosis and inflammation by sponging miR-590-5p to regulate Fasl in intrauterine adhesions[J]. Int Immunopharmacol, 2020, 86: 106703. DOI: 10.1016/j.intimp.2020.106703.
|
[29] |
LI Y, GUO D, ZHAO Y, et al. Long non-coding RNA SNHG5 promotes human hepatocellular carcinoma progression by regulating miR-26a-5p/GSK3β signal pathway[J]. Cell Death Dis, 2018, 9(9): 888. doi: 10.1038/s41419-018-0882-5
|
[30] |
CHEN G, LIU L, SUN J, et al. Foxf2 and Smad6 co-regulation of collagen 5A2 transcription is involved in the pathogenesis of intrauterine adhesion[J]. J Cell Mol Med, 2020, 24(5): 2802-2818. doi: 10.1111/jcmm.14708
|
[31] |
LIU L, CHEN G, CHEN T, et al. si-SNHG5-FOXF2 inhibits TGF-β1-induced fibrosis in human primary endometrial stromal cells by the Wnt/β-catenin signalling pathway[J]. Stem Cell Res Ther, 2020, 11(1): 479. doi: 10.1186/s13287-020-01990-3
|
[32] |
WU Z H, WANG X L, TANG H M, et al. Long non-coding RNA HOTAIR is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer[J]. Oncol Rep, 2014, 32(1): 395-402. doi: 10.3892/or.2014.3186
|
[33] |
GUO X, XIAO H, GUO S, et al. Long noncoding RNA HOTAIR knockdown inhibits autophagy and epithelial-mesenchymal transition through the Wnt signaling pathway in radioresistant human cervical cancer HeLa cells[J]. J Cell Physiol, 2019, 234(4): 3478-3489. doi: 10.1002/jcp.26828
|
[34] |
WU J, JIN L, ZHANG Y, et al. LncRNA HOTAIR promotes endometrial fibrosis by activating TGF-β1/Smad pathway[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52(12): 1337-1347. doi: 10.1093/abbs/gmaa120
|
[35] |
郑媛媛, 李伟, 陈余清. 环状RNA与肿瘤相关性研究进展[J]. 中华全科医学, 2019, 17(7): 1181-1185. doi: 10.16766/j.cnki.issn.1674-4152.000896
ZHENG Y Y, LI W, CHEN Y Q. Research progress on the correlation between circRNAs and tumors[J]. Chinese Journal of General Practice, 2019, 17(7): 1181-1185. doi: 10.16766/j.cnki.issn.1674-4152.000896
|
[36] |
ZHENG Y, LI L, BI X, et al. CircPTP4A2-miR-330-5p-PDK2 signaling facilitates in vivo survival of HuMSCs on SF-SIS scaffolds and improves the repair of damaged endometrium[J]. Oxid Med Cell Longev, 2022, 2022: 2818433. DOI: 10.1155/2022/2818433.
|
[37] |
XIE W, HE M, LIU Y, et al. CircPlekha7 plays an anti-fibrotic role in intrauterine adhesions by modulating endometrial stromal cell proliferation and apoptosis[J]. J Reprod Dev, 2020, 66(6): 493-504. doi: 10.1262/jrd.2019-165
|
[38] |
TIAN F, ZHANG Z Y, SUN J, et al. Expression of miR-207 in renal tissue of renal fibrosis rats and its correlation analysis with protein expression of TGF-β1 and Smad3[J]. Eur Rev Med Pharmacol Sci, 2021, 25(2): 787-794.
|
[39] |
SONG M, ZHAO G, SUN H, et al. CircPTPN12/miR-21-5 p/ΔNp63α pathway contributes to human endometrial fibrosis[J]. Elife, 2021, 10: e65735. DOI: 10.7554/eLife.65735.
|