Citation: | GAO Jie, LI Jiangyan, HUANG Hua, ZHANG Lunjun, DENG Rong. Effects of exosomes derived from hepatocellular carcinoma cells on their biological behaviors of proliferation, apoptosis and autophagy[J]. Chinese Journal of General Practice, 2024, 22(6): 936-939. doi: 10.16766/j.cnki.issn.1674-4152.003538 |
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
|
[2] |
CHEN R, XU X, TAO Y Q, et al. Exosomes in hepatocellular carcinoma: a new horizon[J]. Cell Commun Signal, 2019, 17(1): 1. doi: 10.1186/s12964-018-0315-1
|
[3] |
ZELLI V, COMPAGNONI C, CAPELLI R, et al. Role of exosomal microRNAs in cancer therapy and drug resistance mechanisms: focus on hepatocellular carcinoma[J]. Front Oncol, 2022, 12: 940056. DOI: 10.3389/fonc.2022.940056.
|
[4] |
SU Y Y, CHAO C H, HSU H Y, et al. DDX3 suppresses hepatocellular carcinoma progression through modulating the secretion and composition of exosome[J]. Am J Cancer Res, 2023, 13(5): 1744-1765.
|
[5] |
XI L, PENG M X, LIU S Q, et al. Hypoxia-stimulated ATM activation regulates autophagy-associated exosome release from cancer-associated fibroblasts to promote cancer cell invasion[J]. J Extracell Vesicles, 2021, 10(11): e12146. DOI: 10.1002/jev2.12146.
|
[6] |
XIE Q H, ZHENG J Q, DING J Y, et al. Exosome-mediated immunosuppression in tumor microenvironments[J]. Cells, 2022, 11(12): 1946. doi: 10.3390/cells11121946
|
[7] |
BAI J F, HUANG M, SONG B H, et al. The current status and future prospects for conversion therapy in the treatment of hepatocellular carcinoma[J]. Technol Cancer Res Treat, 2023. DOI: 10.1177/15330338231159718.
|
[8] |
QU Z, FENG J W, PAN H, et al. Exosomes derived from HCC cells with different invasion characteristics mediated EMT through TGF-β/Smad signaling pathway[J]. Onco Targets Ther, 2019, 12: 6897-6905. doi: 10.2147/OTT.S209413
|
[9] |
LIU C J, REN C N, GUO L, et al. Exosome-mediated circTTLL5 transfer promotes hepatocellular carcinoma malignant progression through miR-136-5p/KIAA1522 axis[J]. Pathol Res Pract, 2023, 241: 154276. DOI: 10.1016/j.prp.2022.154276.
|
[10] |
LI X, LI C Y, ZHANG L Q, et al. The significance of exosomes in the development and treatment of hepatocellular carcinoma[J]. Mol Cancer, 2020, 19(1): 1. doi: 10.1186/s12943-019-1085-0
|
[11] |
HAN Q J, ZHAO H J, JIANG Y, et al. HCC-Derived Exosomes: critical player and target for cancer immune escape[J]. Cells, 2019, 8(6): 558. doi: 10.3390/cells8060558
|
[12] |
YANG K K, ZHOU Q B, QIAO B B, et al. Exosome-derived noncoding RNAs: function, mechanism, and application in tumor angiogenesis[J]. Mol Ther Nucleic Acids, 2022, 27: 983-997. doi: 10.1016/j.omtn.2022.01.009
|
[13] |
GE Y, MU W, BA Q, et al. Hepatocellular carcinoma-derived exosomes in organotropic metastasis, recurrence and early diagnosis application[J]. Cancer Lett, 2020, 477: 41-48. doi: 10.1016/j.canlet.2020.02.003
|
[14] |
邹敏, 游逾, 何松, 等. 缺氧外泌体对肝癌Huh7细胞增殖、迁移及侵袭的影响[J]. 中华肝脏病杂志, 2019, 27(5): 363-368. doi: 10.3760/cma.j.issn.1007-3418.2019.05.008
ZOU M, YOU Y, HE S, et al. Effects of hypoxic exosomes on the proliferation, migration and invasion of hepatocellular carcinoma Huh7 cells[J]. Chin J Hepatol, 2019, 27(5): 363-368. doi: 10.3760/cma.j.issn.1007-3418.2019.05.008
|
[15] |
WEI X N, YANG Z H, CHEN G M, et al. VMP1 promotes exosome secretion and enhances 5-FU resistance in colon cancer cells[J]. Tissue Cell, 2022, 77: 101851. DOI: 10.1016/j.tice.2022.101851.
|
[16] |
符山花, 包利利, 赵达, 等. ABT-737对M2型TAM来源外泌体处理的卵巢癌细胞SKOV3自噬性凋亡与干性特征的影响[J]. 西部医学, 2023, 35(5): 654-661, 669. doi: 10.3969/j.issn.1672-3511.2023.05.005
FU S H, BAO L L, ZHAO D, et al. Effects of ABT-737 on autophagy apoptosis and stemness characteristics of SKOV3 ovarian cancer cells treated with M2 tumor-associated macrophage-derived exosomes[J]. Med J West China, 2023, 35(5): 654-661, 669. doi: 10.3969/j.issn.1672-3511.2023.05.005
|
[17] |
YAZDANI H O, HUANG H, TSUNG A. Autophagy: dual response in the development of hepatocellular carcinoma[J]. Cells, 2019, 8(2): 91. doi: 10.3390/cells8020091
|
[18] |
童里, 郑小飞, 顾旺, 等. 细胞自噬在肝细胞肝癌中的研究现状[J]. 中华全科医学, 2023, 21(4): 672-676. doi: 10.16766/j.cnki.issn.1674-4152.002957
TONG L, ZHENG X F, GU W, et al. Research status of autophagy in hepatocellular carcinoma[J]. Chinese Journal of General Practice, 2023, 21(4): 672-676. doi: 10.16766/j.cnki.issn.1674-4152.002957
|
[19] |
KOUROUMALIS E, TSOMIDIS I, VOUMVOURAKI A. Pathogenesis of hepatocellular carcinoma: the interplay of apoptosis and autophagy[J]. Biomedicines, 2023, 11(4): 1166. doi: 10.3390/biomedicines11041166
|
[20] |
MA W J, ZHOU Y, LIU M, et al. Long non-cod-ing RNA LINC00470 in serum derived exosome: a critical regulator for proliferation and autophagy in glioma cells[J]. Cancer Cell Int, 2021, 21(1): 149. doi: 10.1186/s12935-021-01825-y
|
[21] |
YAO W J, GUO P, MU Q M, et al. Exosome-derived circ-PVT1 contributes to cisplatin resistance by regulating autophagy, invasion, and apoptosis via miR-30a-5p/YAP1 axis in gastric cancer cells[J]. Cancer Biother Radiopharm, 2021, 36(4): 347-359.
|
[22] |
LIAO M M, QIN M R, LIU L H, et al. Exosomal microRNA profiling revealed enhanced autophagy suppression and anti-tumor effects of a combination of compound Phyllanthus urinaria and lenvatinib in hepatocellular carcinoma[J]. Phytomedicine, 2024, 122: 155091. DOI: 10.1016/j.phymed.2023.155091.
|