Citation: | LIU Yuecun, LIU Qingxia, LIU Qi. Correlation and diagnostic significance of serum LncRNA NEAT1 and SP1 with H-Y grade in patients with Parkinson's disease[J]. Chinese Journal of General Practice, 2024, 22(6): 983-986. doi: 10.16766/j.cnki.issn.1674-4152.003549 |
[1] |
TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinson's disease[J]. Lancet Neurol, 2021, 20(5): 385-397. doi: 10.1016/S1474-4422(21)00030-2
|
[2] |
HAYES M T. Parkinson's disease and Parkinsonism[J]. Am J Med, 2019, 132(7): 802-807. doi: 10.1016/j.amjmed.2019.03.001
|
[3] |
中华医学会神经病学分会帕金森病及运动障碍学组, 中国医师协会神经内科医师分会帕金森病及运动障碍学组. 早发型帕金森病的诊断与治疗中国专家共识[J]. 中华神经医学杂志, 2021, 20(2): 109-116. doi: 10.3760/cma.j.cn115354-20201119-00903
Parkinson's Disease and movement Disorders Group, Chinese Medical Association Neurology Branch, and Parkinson's Disease and movement Disorders Group, Chinese Medical Doctor Association Neurology Branch. Chinese expert consensus on diagnoses and treatments of early-onset Parkinson's disease[J]. Chinese Journal of Neuromedicine, 2021, 20(2): 109-116. doi: 10.3760/cma.j.cn115354-20201119-00903
|
[4] |
曹津津, 宋琼, 邹春林. 细胞治疗帕金森病的研究进展[J]. 天津医药, 2022, 50(4): 428-433. https://www.cnki.com.cn/Article/CJFDTOTAL-TJYZ202204017.htm
CAO J J, SONG Q, ZHOU C L. Recent advances in cell therapy for Parkinson's disease[J]. Tianjin Medical Journal, 2022, 50(4): 428-433. https://www.cnki.com.cn/Article/CJFDTOTAL-TJYZ202204017.htm
|
[5] |
SALEMI M, LANZA G, MOGAVERO M P, et al. A transcriptome analysis of mRNAs and long non-coding RNAs in patients with Parkinson's disease[J]. Int J Mol Sci, 2022, 23(3): 1535. doi: 10.3390/ijms23031535
|
[6] |
LIU Y, LU Z. Long non-coding RNA NEAT1 mediates the toxic of Parkinson's disease induced by MPTP/MPP+ via regulation of gene expression[J]. Clin Exp Pharmacol Physiol, 2018, 45(8): 841-848. doi: 10.1111/1440-1681.12932
|
[7] |
WU Z, DU Y, LI Z, et al. Soldier caste-specific protein 1 is involved in soldier differentiation in termite reticulitermes aculabialis[J]. Insects, 2022, 13(6): 502. doi: 10.3390/insects13060502
|
[8] |
YAO L, DAI X, SUN Y, et al. Inhibition of transcription factor SP1 produces neuroprotective effects through decreasing MAO B activity in MPTP/MPP+ Parkinson's disease models[J]. J Neurosci Res, 2018, 96(10): 1663-1676. doi: 10.1002/jnr.24266
|
[9] |
HOEHN M M, YAHR M D. Parkinsonism: onset, progression and mortality[J]. Neurology, 1967, 17(5): 427-442. doi: 10.1212/WNL.17.5.427
|
[10] |
QI S, YIN P, WANG L, et al. Prevalence of Parkinson's disease: a community-based study in China[J]. Mov Disord, 2021, 36(12): 2940-2944. doi: 10.1002/mds.28762
|
[11] |
SONG Z, LIU S, LI X, et al. Prevalence of Parkinson's disease in adults aged 65 years and older in China: a multicenter population-based survey[J]. Neuroepidemiology, 2022, 56(1): 50-58. doi: 10.1159/000520726
|
[12] |
王伟, 曹庆华, 孙光玲, 等. 脑白质病变与帕金森病患者运动症状及非运动症状的相关性分析[J]. 中华全科医学, 2022, 20(2): 237-239. doi: 10.16766/j.cnki.issn.1674-4152.002321
WANG W, CAO Q H, SUN G L, et al. Correlation analysis of white matter lesions and motor symptoms and non-motor symptoms in Parkinson's patients[J]. Chinese Journal of General Practice, 2022, 20(2): 237-239. doi: 10.16766/j.cnki.issn.1674-4152.002321
|
[13] |
LI Y, GU Z, LIN S, et al. Histone deacetylases as epigenetic targets for treating Parkinson's disease[J]. Brain Sci, 2022, 12(5): 672. doi: 10.3390/brainsci12050672
|
[14] |
TAGHIZADEH E, GHEIBIHAYAT S M, TAHERI F, et al. LncRNAs as putative biomarkers and therapeutic targets for Parkinson's disease[J]. Neurol Sci, 2021, 42(10): 4007-4015. doi: 10.1007/s10072-021-05408-7
|
[15] |
欧诒丹, 高元杰, 陈静. GAS5靶向miR-128调控帕金森病模型细胞凋亡的分子机制[J]. 中国老年学杂志, 2022, 42(5): 1178-1182. doi: 10.3969/j.issn.1005-9202.2022.05.044
OU Y D, GAO Y J, CHEN J. Molecular mechanism of GAS5 targeting miR-128 in regulating apoptosis of Parkinson's disease model cells[J]. Chinese Journal of Gerontology, 2022, 42(5): 1178-1182. doi: 10.3969/j.issn.1005-9202.2022.05.044
|
[16] |
CHEN C, ZHANG S, WEI Y, et al. LncRNA RMST regulates neuronal apoptosis and inflammatory response via sponging miR-150-5p in Parkinson's disease[J]. Neuroimmunomodulation, 2022, 29(1): 55-62. doi: 10.1159/000518212
|
[17] |
张信远, 李德珠, 林瑶, 等. lncRNA NEAT1在中枢神经系统疾病中的研究进展[J]. 生物化学与生物物理进展, 2020, 47(11): 1174-1182. https://www.cnki.com.cn/Article/CJFDTOTAL-SHSW202011006.htm
ZHANG X Y, LI D Z, LIN Y, et al. Research Progress of Long lncRNA NEAT1in The Central Nervous System Diseases[J]. Progress in Biochemistry and Biophysics, 2020, 47(11): 1174-1182. https://www.cnki.com.cn/Article/CJFDTOTAL-SHSW202011006.htm
|
[18] |
KE S, YANG Z, YANG F, et al. Long noncoding RNA NEAT1 aggravates Aβ-induced neuronal damage by targeting miR-107 in Alzheimer's disease[J]. Yonsei Med J, 2019, 60(7): 640-650. doi: 10.3349/ymj.2019.60.7.640
|
[19] |
JIN F, OU W, WEI B, et al. Transcriptome-wide analysis to identify the inflammatory role of lncRNA NEAT1 in experimental ischemic stroke[J]. J Inflamm Res, 2021, 14: 2667-2680. doi: 10.2147/JIR.S315281
|
[20] |
MARTÍNEZ-MENÁRGUEZ J Á, MARTÍNEZ-ALONSO E, CARA-ESTEBAN M, et al. Focus on the small GTPase Rab1: a key player in the pathogenesis of Parkinson's disease[J]. Int J Mol Sci, 2021, 22(21): 12087. doi: 10.3390/ijms222112087
|
[21] |
ZHOU S, ZHANG D, GUO J, et al. Deficiency of NEAT1 prevented MPP+-induced inflammatory response, oxidative stress and apoptosis in dopaminergic SK-N-SH neuroblastoma cells via miR-1277-5p/ARHGAP26 axis[J]. Brain Res, 2021, 1750: 147156. DOI: 10.1016/j.brainres.2020.147156.
|
[22] |
GONZALEZ-HUNT C P, SANDERS L H. DNA damage and repair in Parkinson's disease: recent advances and new opportunities[J]. J Neurosci Res, 2021, 99(1): 180-189. doi: 10.1002/jnr.24592
|
[23] |
WANG D, CHEN F, FANG B, et al. MiR-128-3p alleviates spinal cord ischemia/reperfusion injury associated neuroinflammation and cellular apoptosis via SP1 suppression in rat[J]. Front Neurosci, 2020, 14: 609613. DOI: 10.3389/fnins.2020.609613.
|
[24] |
DABROWSKA K, SKOWROŃSKA K, POPEK M, et al. The role of Nrf2 transcription factor and SP1-Nrf2 protein complex in glutamine transporter SN1 regulation in mouse cortical astrocytes exposed to ammonia[J]. Int J Mol Sci, 2021, 22(20): 11233. DOI: 10.3390/ijms222011233.
|
[25] |
CAO Y, TAN X, LU Q, et al. miR-590-3 and SP1 promote neuronal apoptosis in patients with Alzheimer's disease via AMPK signaling pathway[J]. Contrast Media Mol Imaging, 2021, 2021: 6010362. DOI: 10.1155/2021/6010362.
|
[26] |
SISWANTO F M, OGURO A, IMAOKA S. SP1 is a substrate of Keap1 and regulates the activity of CRL4AWDR23 ubiquitin ligase toward Nrf2[J]. J Biol Chem, 2021, 296: 100704. DOI: 10.1016/j.jbc.2021.100704.
|
[27] |
CAI L J, TU L, LI T, et al. Up-regulation of microRNA-375 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson's disease by inhibiting SP1[J]. Aging (Albany NY), 2020, 12(1): 672-689.
|
[28] |
WANG S, WEN Q, XIONG B, et al. Long noncoding RNA NEAT1 knockdown ameliorates 1-Methyl-4-Phenylpyridine-Induced cell injury through microRNA-519a-3p/SP1 axis in Parkinson disease[J]. World Neurosurg, 2021, 156: e93-e103. doi: 10.1016/j.wneu.2021.08.147
|