Volume 22 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
MU Yapeng, ZHUANG Xianghua, SONG Yuwen, XU Peichen, LOU Nengjun, CHEN Shihong. The advancing research progress of the correlation and mechanism between osteoporosis and bacterial flora[J]. Chinese Journal of General Practice, 2024, 22(6): 1038-1042. doi: 10.16766/j.cnki.issn.1674-4152.003561
Citation: MU Yapeng, ZHUANG Xianghua, SONG Yuwen, XU Peichen, LOU Nengjun, CHEN Shihong. The advancing research progress of the correlation and mechanism between osteoporosis and bacterial flora[J]. Chinese Journal of General Practice, 2024, 22(6): 1038-1042. doi: 10.16766/j.cnki.issn.1674-4152.003561

The advancing research progress of the correlation and mechanism between osteoporosis and bacterial flora

doi: 10.16766/j.cnki.issn.1674-4152.003561
Funds:

 ZR2021LSW016

  • Received Date: 2024-01-05
    Available Online: 2024-07-22
  • Osteoporosis (OP) is a serious public health problem that affects the quality of life of patients and can lead to fragility fracture. Various studies have shown that OP is closely associated with dysbiosis, which refers to an imbalance of the body's microbiota. Dysbiosis has been linked to a range of systemic diseases, including OP. This paper provides an overview of both fundamental and clinical studies related to flora and OP, summarizing the underlying mechanisms behind alterations in intestinal and oral flora with a specific focus on distinct bacterial species and genera. Bacterial flora affects pathways related to OP pathogenesis by mediating hormonal effects, producing specific metabolites, inducing immune cell differentiation, and altering the levels of inflammatory factors. Different genera have different roles in the pathogenesis of the disease. Lactobacillus, bifidobacterium and fusobacterium in the intestinal flora have protective roles, while Serratia marcescens is a risk factor. TM7 and Lactobacillus in oral flora may have protective effects, and actinomyces and Forsestanella may promote bone resorptive through inflammatory response. Some genera also play a role in maintaining flora balance. This review aims to provide ideas and references for the treatment of OP by summarizing the connection and interaction mechanism between OP and flora.

     

  • loading
  • [1]
    PODLESNY D, FRICKE W F. Strain inheritance and neonatal gut microbiota development: a meta-analysis[J]. Int J Med Microbiol, 2021, 311(3): 151483. DOI: 10.1016/j.ijmm.2021.151483.
    [2]
    VALLES-COLOMER M, BLANCO-MÍGUEZ A, MANGHI P, et al. The person-to-person transmission landscape of the gut and oral microbiomes[J]. Nature, 2023, 614(7946): 125-135. doi: 10.1038/s41586-022-05620-1
    [3]
    BURCELIN R. Gut microbiota and immune crosstalk in metabolic disease[J]. Mol Metab, 2016, 5(9): 771-781. doi: 10.1016/j.molmet.2016.05.016
    [4]
    DEBRÉ P, LE GALL J Y, Commission I (Biologie). Intestinal microbiota[J]. Bull Acad Natl Med, 2014, 198(9): 1667-1684.
    [5]
    赵萌, 杨轶童, 李翰文, 等. 肠道微生物菌群与川崎病关系研究进展[J]. 陕西医学杂志, 2024, 53(2): 270-273, 281. doi: 10.3969/j.issn.1000-7377.2024.02.027

    ZHAO M, YANG Y T, LI H W, et al. Research progress on relationship between gut microbiota and Kawasaki disease[J]. Shanxi Medical Journal, 2024, 53(2): 270-273, 281. doi: 10.3969/j.issn.1000-7377.2024.02.027
    [6]
    中华医学会骨质疏松和骨矿盐疾病分会, 章振林. 原发性骨质疏松症诊疗指南(2022)[J]. 中国全科医学, 2023, 26(14): 1671-1691. doi: 10.12114/j.issn.1007-9572.2023.0121

    Chinese Society of Osteoporosis and Bone Mineral Salt Diseases, ZHANG Z L. Guidelines for the Diagnosis and Treatment of Primary Osteoporosis(2022)[J]. Chinese General Practice, 2023, 26(14): 1671-1691. doi: 10.12114/j.issn.1007-9572.2023.0121
    [7]
    FALONY G, VIEIRA-SILVA S, RAES J. Microbiology meets big data: the case of gut microbiota-derived trimethylamine[J]. Annu Rev Microbiol, 2015, 69: 305-321. doi: 10.1146/annurev-micro-091014-104422
    [8]
    朱双, 汤帅, 丁刚. 口腔菌群与口腔疾病及全身性疾病关系的研究进展[J]. 中国医药导报, 2023, 20(18): 35-38, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202318008.htm

    ZHU S, TANG S, DING G. Research progress on the relationship between oral flora and oral diseases and systemic diseases[J]. China Medicine Herald, 2023, 20(18): 35-38, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202318008.htm
    [9]
    何姣姣, 陈玉林, 张敏, 等. 肠道菌群在骨质疏松症发病机制中的研究[J]. 中国骨质疏松杂志, 2023, 29(8): 1197-1202. doi: 10.3969/j.issn.1006-7108.2023.08.018

    HE J J, CHEN Y L, ZHANG M, et al. Study on the role of intestinal microflora in the pathogenesis of osteoporosis[J]. Chinese Journal of Osteoporosis, 2023, 29(8): 1197-1202. doi: 10.3969/j.issn.1006-7108.2023.08.018
    [10]
    ALQRANEI M S, SENBANJO L T, ALJOHANI H, et al. Lipopolysaccharide-TLR-4 axis regulates osteoclastogenesis independent of RANKL/RANK signaling[J]. BMC Immunol, 2021, 22(1): 23. doi: 10.1186/s12865-021-00409-9
    [11]
    陈浩彬, 罗世城, 曹祚, 等. 应用16S rDNA扩增子序列分析去卵巢骨丢失小鼠口腔菌群的变化[J]. 解放军医学院学报, 2023, 44(4): 401-407, 433. https://www.cnki.com.cn/Article/CJFDTOTAL-JYJX202304013.htm

    CHEN H B, LUO S C, CAO Z, et al. Oral microbiota changes of bone loss mice induced by ovariectomy via 16S rDNA amplicon sequencing[J]. Journal of the PLA Medical College, 2023, 44(4): 401-407, 433. https://www.cnki.com.cn/Article/CJFDTOTAL-JYJX202304013.htm
    [12]
    LI J Y, CHASSAING B, TYAGI A M, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics[J]. J Clin Invest, 2016, 126(6): 2049-2063. doi: 10.1172/JCI86062
    [13]
    祝启丽, 刘洋. 青春期肠道菌群特征及性别二态性研究进展[J]. 中国学校卫生, 2023, 44(11): 1752-1755, 1760. https://www.cnki.com.cn/Article/CJFDTOTAL-XIWS202311034.htm

    ZHU Q L, LIU Y. Recent advances in intestinal flora characteristics and sexual dimorphism during puberty[J]. Chinese Journal of School Health, 2023, 44(11): 1752-1755, 1760. https://www.cnki.com.cn/Article/CJFDTOTAL-XIWS202311034.htm
    [14]
    OOI J H, LI Y, ROGERS C J, et al. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis[J]. J Nutr, 2013, 143(10): 1679-1686. doi: 10.3945/jn.113.180794
    [15]
    OHLSSON C, ENGDAHL C, FÅK F, et al. Probiotics protect mice from ovariectomy-induced cortical bone loss[J]. PLoS One, 2014, 9(3): e92368. DOI: 10.1371/journal.pone.0092368.
    [16]
    武士清. 人甲状旁腺激素对糖尿病大鼠骨质疏松的影响及其分子机制的研究[D]. 济南: 山东大学, 2020.

    WU S Q, Effects of human parathyroid hormone on osteoporosis in diabetic rats and its molecular mechanism[D]. Jinan: Shandong University, 2020.
    [17]
    LI J Y, YU M, PAL S, et al. Parathyroid hormone-dependent bone formation requires butyrate production by intestinal microbiota[J]. J Clin Invest, 2020, 130(4): 1767-1781. doi: 10.1172/JCI133473
    [18]
    SJÖGREN K, ENGDAHL C, HENNING P, et al. The gut microbiota regulates bone mass in mice[J]. J Bone Miner Res, 2012, 27(6): 1357-1367. doi: 10.1002/jbmr.1588
    [19]
    YAN J, HERZOG J W, TSANG K, et al. Gut microbiota induce IGF-1 and promote bone formation and growth[J]. Proc Natl Acad Sci USA, 2016, 113(47): E7554-E7563.
    [20]
    ZHAO W, LIU Y, CAHILL C M, et al. The role of T cells in osteoporosis, an update[J]. Int J Clin Exp Pathol, 2009, 2(6): 544-552.
    [21]
    ATARASHI K, TANOUE T, SHIMA T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species[J]. Science, 2011, 331(6015): 337-341. doi: 10.1126/science.1198469
    [22]
    ZHANG J, MOTYL K J, IRWIN R, et al. Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic lactobacillus reuteri[J]. Endocrinology, 2015, 156(9): 3169-3182. doi: 10.1210/EN.2015-1308
    [23]
    MUTUŞ R, KOCABAGLI N, ALP M, et al. The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers[J]. Poult Sci, 2006, 85(9): 1621-1625. doi: 10.1093/ps/85.9.1621
    [24]
    袁鹏, 董万涛, 张杰, 等. 肠道微生物代谢产物丁酸对骨代谢机制的研究进展[J]. 中国骨质疏松杂志, 2023, 29(11): 1712-1716. doi: 10.3969/j.issn.1006-7108.2023.11.027

    YUAN P, DONG W T, ZHANG J, et al. Research progress on the mechanism of butyric acid, a metabolic product of gut microbiota, on bone metabolism[J]. Chinese Journal of Osteoporosis, 2023, 29(11): 1712-1716. doi: 10.3969/j.issn.1006-7108.2023.11.027
    [25]
    AKINSUYI O S, ROESCH L F W. Meta-analysis reveals compositional and functional microbial changes associated with osteoporosis[J]. Microbiol Spectr, 2023, 11(3): e0032223. DOI: 10.1128/spectrum.00322-23.
    [26]
    CHE Y T, YANG J Z, TANG F, et al. New function of cholesterol oxidation products involved in osteoporosis pathogenesis[J]. Int J Mol Sci, 2022, 23(4): 2020. DOI: 10.3390/ijms23042020.
    [27]
    KAJIMURA D, HINOI E, FERRON M, et al. Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual[J]. J Exp Med, 2011, 208(4): 841-851. doi: 10.1084/jem.20102608
    [28]
    PAWLAK D, DOMANIEWSKI T, ZNORKO B, et al. The impact of peripheral serotonin on leptin-brain serotonin axis, bone metabolism and strength in growing rats with experimental chronic kidney disease[J]. Bone, 2017, 105: 1-10. doi: 10.1016/j.bone.2017.08.004
    [29]
    CHAO C K, ZEISEL S H. Formation of trimethylamine from dietary choline by Streptococcus sanguis Ⅰ, which colonizes the mouth[J]. J Nutr Biochem, 1990, 1(2): 89-97. doi: 10.1016/0955-2863(90)90055-P
    [30]
    赵阳婷, 陈重阳, 潘斌晶, 等. 三甲胺N-氧化物: 骨质疏松治疗的潜在靶点[J]. 中国临床药理学与治疗学, 2023, 28(10): 1161-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-YLZL202310010.htm

    ZHAO Y T, CHEN C Y, PAN B J, et al. Trimethylamine N-oxide: a potential target for osteoporosis treatment[J]. Chinese Clinical Pharmacology and Therapeutics, 2023, 28(10): 1161-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-YLZL202310010.htm
    [31]
    SUN Y, ZHANG H J, CHEN R, et al. 16S rDNA analysis of osteoporotic rats treated with osteoking[J]. J Med Microbiol, 2022, 71(6). DOI: 10.1099/jmm.0.001552.
    [32]
    ZHANG R K, YAN K, CHEN H F, et al. Anti-osteoporotic drugs affect the pathogenesis of gut microbiota and its metabolites: a clinical study[J]. Front Cell Infect Microbiol, 2023, 13: 1091083. DOI: 10.3389/fcimb.2023.1091083.
    [33]
    RIAHI H S, HEIDARIEH P, FATAHI-BAFGHI M. Genus Pseudonocardia: what we know about its biological properties, abilities and current application in biotechnology[J]. J Appl Microbiol, 2022, 132(2): 890-906. doi: 10.1111/jam.15271
    [34]
    WOO C Y, KIM J. Variovorax terrae sp. nov. Isolated from soil with potential antioxidant activity[J]. J Microbiol Biotechnol, 2022, 32(7): 855-861. doi: 10.4014/jmb.2205.05018
    [35]
    BRAUN B, RICHERT I, SZEWZYK U. Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe[J]. J Microbiol Methods, 2009, 79(1): 37-43. doi: 10.1016/j.mimet.2009.07.014
    [36]
    HUANG R, LIU P, BAI Y G, et al. Changes in the gut microbiota of osteoporosis patients based on 16S rRNA gene sequencing: a systematic review and meta-analysis[J]. J Zhejiang Univ Sci B, 2022, 23(12): 1002-1013. doi: 10.1631/jzus.B2200344
    [37]
    LIANG H L, JI K, GE X P, et al. Methionine played a positive role in improving the intestinal digestion capacity, anti-inflammatory reaction and oxidation resistance of grass carp, Ctenopharyngodon idella, fry[J]. Fish Shellfish Immunol, 2022, 128: 389-397. doi: 10.1016/j.fsi.2022.07.066
    [38]
    JONES M L, MARTONI C J, PRAKASH S. Oral supplementation with probiotic L. reuteri NCIMB 30 242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial[J]. J Clin Endocrinol Metab, 2013, 98(7): 2944-2951. doi: 10.1210/jc.2012-4262
    [39]
    周冬燕, 陆瑶伽, 蔡琪. 更年期女性因骨质疏松导致牙齿脱落的影响因素分析[J]. 中国妇幼保健, 2022, 37(6): 1121-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZFYB202206044.htm

    ZHOU D Y, LU Y J, CAI Q. Analysis of factors affecting tooth loss due to osteoporosis in menopausal women[J]. China Maternal and Child Health, 2022, 37(6): 1121-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZFYB202206044.htm
    [40]
    HERNÁNDEZ-VIGUERAS S, MARTÍNEZ-GARRIGA B, SÁNCHEZ M C, et al. Oral microbiota, periodontal status, and osteoporosis in postmenopausal females[J]. J Periodontol, 2016, 87(2): 124-133. doi: 10.1902/jop.2015.150365
    [41]
    BRENNAN-CALANAN R M, GENCO R J, WILDING G E, et al. Osteoporosis and oral infection: independent risk factors for oral bone loss[J]. J Dent Res, 2008, 87(4): 323-327. doi: 10.1177/154405910808700403
    [42]
    FREIRE M, NELSON K E, EDLUND A. The oral host-microbial interactome: an ecological chronometer of health?[J]. Trends Microbiol, 2021, 29(6): 551-561. doi: 10.1016/j.tim.2020.11.004
    [43]
    孙鹏飞, 张佳铭, 周铖, 等. 骨质疏松与口腔环境的相关性研究[J]. 医学信息, 2021, 34(9): 45-47, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXX202109012.htm

    SUN P F, ZHANG J M, ZHOU C, et al. Correlation study between osteoporosis and oral environment[J]. Medical Information, 2021, 34(9): 45-47, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXX202109012.htm
    [44]
    DUTZAN N, KAJIKAWA T, ABUSLEME L, et al. A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans[J]. Sci Transl Med, 2018, 10(463): eaat0797. DOI: 10.1126/scitranslmed.aat0797.
    [45]
    CERRATO A, ZANETTE G, BOCCUTO M, et al. Actinomyces and MRONJ: a retrospective study and a literature review[J]. J Stomatol Oral Maxillofac Surg, 2021, 122(5): 499-504. doi: 10.1016/j.jormas.2020.07.012
    [46]
    CHIPASHVILI O, UTTER D R, BEDREE J K, et al. Episymbiotic Saccharibacteria suppresses gingival inflammation and bone loss in mice through host bacterial modulation[J]. Cell Host Microbe, 2021, 29(11): 1649-1662. doi: 10.1016/j.chom.2021.09.009
    [47]
    马成, 谢兴文, 李宁, 等. 特异性促炎症消退介质在骨病治疗中的研究进展[J]. 中国骨质疏松杂志, 2023, 29(9): 1379-1385. doi: 10.3969/j.issn.1006-7108.2023.09.022

    MA C, XIE X W, LI N, et al. Progress of specific pro-inflammatory and abrogative mediators in the treatment of bone diseases[J]. Chinese Journal of Osteoporosis, 2023, 29(9): 1379-1385. doi: 10.3969/j.issn.1006-7108.2023.09.022
    [48]
    赖静, 余昕, 郭姗姗. 牙周炎和骨质疏松症相关性研究现状的探讨[J]. 现代医学与健康研究电子杂志, 2023, 7(15): 131-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJD202315042.htm

    LAI J, YU X, GUO S S. Current status of research on the correlation between periodontitis and osteoporosis[J]. Electronic Journal of Modern Medicine and Health Research, 2023, 7(15): 131-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJD202315042.htm
    [49]
    欧阳嵘, 崔世维, 朱轶晴, 等. 2型糖尿病炎症因子水平与骨质疏松症的关系[J]. 中华全科医学, 2013, 11(5): 690-691. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201305017.htm

    OUYANG R, CUI S W, ZHU Y Q, et al. Relationship between inflammatory factor levels and osteoporosis in type 2 diabetes mellitus[J]. Chinese Journal of General Practice, 2013, 11(5): 690-691. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201305017.htm
    [50]
    徐克, 樊金婷, 周晓辉. 原发性骨质疏松相关基因研究进展[J]. 临床医药文献电子杂志, 2018, 5(74): 197-198. doi: 10.3877/j.issn.2095-8242.2018.74.117

    XU K, FAN J T, ZHOU X H. Progress in primary osteoporosis-related gene research[J]. Electronic Journal of Clinical Medicine Literature, 2018, 5(74): 197-198. doi: 10.3877/j.issn.2095-8242.2018.74.117
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (146) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return