Citation: | GAO Song, ZHANG Min, LU Yuan. Research progress on biomarkers of mild cognitive impairment[J]. Chinese Journal of General Practice, 2024, 22(6): 1043-1046. doi: 10.16766/j.cnki.issn.1674-4152.003562 |
[1] |
PETERSEN R C. Mild cognitive impairment[J]. Continuum (Minneap Minn), 2016, 22(2Dementia): 404-418.
|
[2] |
PETERSEN R C. Mild cognitive impairment: transition between aging and Alzheimer's disease[J]. Neurologia, 2000, 15(3): 93-101.
|
[3] |
ALBERT M S, DEKOSKY S T, DICKSON D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7(3): 270-279. doi: 10.1016/j.jalz.2011.03.008
|
[4] |
CLIFFORD R J, DAVID A B, KAJ B, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer's disease[J]. Alzheimers Dement, 2018, 14(4): 535-562. doi: 10.1016/j.jalz.2018.02.018
|
[5] |
ZETTERBERG H, PEDERSEN M, LIND K, et al. Intra-individual stability of CSF biomarkers for Alzheimer's disease over two years[J]. J Alzheimers Dis, 2007, 12(3): 255-260. doi: 10.3233/JAD-2007-12307
|
[6] |
BUCHHAVE P, MINTHON L, ZETTERBERG H, et al. Cerebrospinal fluid levels of beta-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia[J]. Arch Gen Psychiatry, 2012, 69(1): 98-106. doi: 10.1001/archgenpsychiatry.2011.155
|
[7] |
STENH C, ENGLUND H, LORD A, et al. Amyloid-beta oligomers are inefficiently measured by enzyme-linked immunosorbent assay[J]. Ann Neurol, 2005, 58(1): 147-150. doi: 10.1002/ana.20524
|
[8] |
HANSSON O, ZETTERBERG H, BUCHHAVE P, et al. Prediction of Alzheimer's disease using the CSF Abeta42/Abeta40 ratio in patients with mild cognitive impairment[J]. Dement Geriatr Cogn Disord, 2007, 23(5): 316-320. doi: 10.1159/000100926
|
[9] |
MA Y, BRETTSCHNEIDER J, COLLINGWOOD J F. A systematic review and meta-analysis of cerebrospinal fluid amyloid and tau levels identifies mild cognitive impairment patients progressing to Alzheimer's disease[J]. Biomedicines, 2022, 10(7): 1713. DOI: 10.3390/biomedicines10071713.
|
[10] |
OLSSON B, LAUTNER R, ANDREASSON U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis[J]. Lancet Neurol, 2016, 15(7): 673-684. doi: 10.1016/S1474-4422(16)00070-3
|
[11] |
HARALD H, KATHARINA B, JENS C P, et al. Correlation of cerebrospinal fluid levels of tau protein phosphorylated at threonine 231 with rates of hippocampal atrophy in Alzheimer's disease[J]. Archives of Neurology, 2005, 62(5): 770-3. DOI: 10.1001/archneur.62.5.770
|
[12] |
BUERGER K, TEIPEL S J, ZINKOWSKI R, et al. CSF tau protein phosphorylated at threonine 231 correlates with cognitive decline in MCI subjects[J]. Neurology, 2002, 59(4): 627-629. doi: 10.1212/WNL.59.4.627
|
[13] |
JANELIDZE S, STOMRUD E, SMITH R, et al. Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer's disease[J]. Nat Commun, 2020, 11(1): 1683. doi: 10.1038/s41467-020-15436-0
|
[14] |
BARTHELEMY N R, BATEMAN R J, HIRTZ C, et al. Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer's disease and PET amyloid-positive patient identification[J]. Alzheimers Res Ther, 2020, 12(1): 26. doi: 10.1186/s13195-020-00596-4
|
[15] |
LANTERO-RODRIGUEZ J, SNELLMAN A, BENEDET A L, et al. P-tau235: a novel biomarker for staging preclinical Alzheimer's disease[J]. EMBO Mol Med, 2021, 13(12): e15098. DOI: 10.15252/emmm.202115098.
|
[16] |
KANDALEPAS P C, SADLEIR K R, EIMER W A, et al. The Alzheimer's beta-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques[J]. Acta Neuropathol, 2013, 126(3): 329-352. doi: 10.1007/s00401-013-1152-3
|
[17] |
ZETTERBERG H, ANDREASSON U, HANSSON O, et al. Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease[J]. Arch Neurol, 2008, 65(8): 1102-1107.
|
[18] |
ZHONG Z, EWERS M, TEIPEL S, et al. Levels of beta-secretase (BACE1) in cerebrospinal fluid as a predictor of risk in mild cognitive impairment[J]. Arch Gen Psychiatry, 2007, 64(6): 718-726. doi: 10.1001/archpsyc.64.6.718
|
[19] |
VERHEIJEN J H, HUISMAN L G, van LENT N, et al. Detection of a soluble form of BACE1 in human cerebrospinal fluid by a sensitive activity assay[J]. Clin Chem, 2006, 52(6): 1168-1174. doi: 10.1373/clinchem.2006.066720
|
[20] |
ROSEN C, ANDREASSON U, MATTSSON N, et al. Cerebrospinal fluid profiles of amyloid beta-related biomarkers in Alzheimer's disease[J]. Neuromolecular Med, 2012, 14(1): 65-73. doi: 10.1007/s12017-012-8171-4
|
[21] |
HOLSINGER R M, LEE J S, BOYD A, et al. CSF BACE1 activity is increased in CJD and Alzheimer's disease versus[corrected] other dementias[J]. Neurology, 2006, 67(4): 710-712. doi: 10.1212/01.wnl.0000229925.52203.4c
|
[22] |
MULDER S D, van der FLIER W M, VERHEIJEN J H, et al. BACE1 activity in cerebrospinal fluid and its relation to markers of AD pathology[J]. J Alzheimers Dis, 2010, 20(1): 253-260. doi: 10.3233/JAD-2010-1367
|
[23] |
CHOURAKI V, BEISER A, YOUNKIN L, et al. Plasma amyloid-beta and risk of Alzheimer's disease in the Framingham Heart Study[J]. Alzheimers Dement, 2015, 11(3): 249-257. doi: 10.1016/j.jalz.2014.07.001
|
[24] |
van OIJEN M, HOFMAN A, SOARES H D, et al. Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia: a prospective case-cohort study[J]. Lancet Neurol, 2006, 5(8): 655-660. doi: 10.1016/S1474-4422(06)70501-4
|
[25] |
ABDULLAH L, LUIS C, PARIS D, et al. Serum Abeta levels as predictors of conversion to mild cognitive impairment/Alzheimer disease in an ADAPT subcohort[J]. Mol Med, 2009, 15(11-12): 432-437. doi: 10.2119/molmed.2009.00083
|
[26] |
HANSSON O, ZETTERBERG H, VANMECHELEN E, et al. Evaluation of plasma Aβ40 and Aβ42 as predictors of conversion to Alzheimer's disease in patients with mild cognitive impairment[J]. Neurobiol Aging, 2010, 31(3): 357-367. doi: 10.1016/j.neurobiolaging.2008.03.027
|
[27] |
LOPEZ O L, KULLER L H, MEHTA P D, et al. Plasma amyloid levels and the risk of AD in normal subjects in the cardiovascular health study[J]. Neurology, 2008, 70(19): 1664-1671. doi: 10.1212/01.wnl.0000306696.82017.66
|
[28] |
LOVHEIM H, ELGH F, JOHANSSON A, et al. Plasma concentrations of free amyloid beta cannot predict the development of Alzheimer's disease[J]. Alzheimers Dement, 2017, 13(7): 778-782. doi: 10.1016/j.jalz.2016.12.004
|
[29] |
TOSUN D, VEITCH D, AISEN P, et al. Detection of β-amyloid positivity in Alzheimer's disease neuroimaging initiative participants with demographics, cognition, MRI and plasma biomarkers[J]. Brain Communications, 2021, 3(2). DOI: 10.1093/braincomms/fcab008.
|
[30] |
QU Y, MA Y H, HUANG Y Y, et al. Blood biomarkers for the diagnosis of amnestic mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis[J]. Neurosci Biobehav Rev, 2021, 128: 479-486. doi: 10.1016/j.neubiorev.2021.07.007
|
[31] |
SIMREN J, LEUZY A, KARIKARI T K, et al. The diagnostic and prognostic capabilities of plasma biomarkers in Alzheimer's disease[J]. Alzheimers Dement, 2021, 17(7): 1145-1156. doi: 10.1002/alz.12283
|
[32] |
MIELKE M M, HAGEN C E, WENNBERG A, et al. Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the Mayo clinic study on aging[J]. JAMA Neurol, 2017, 74(9): 1073-1080. doi: 10.1001/jamaneurol.2017.1359
|
[33] |
MIELKE M M, HAGEN C E, XU J, et al. Plasma phospho-tau181 increases with Alzheimer's disease clinical severity and is associated with tau-and amyloid-positron emission tomography[J]. Alzheimers Dement, 2018, 14(8): 989-997. doi: 10.1016/j.jalz.2018.02.013
|
[34] |
MATTSSON-CARLGREN N, JANELIDZE S, PALMQVIST S, et al. Longitudinal plasma p-tau217 is increased in early stages of Alzheimer's disease[J]. Brain, 2020, 143(11): 3234-3241. doi: 10.1093/brain/awaa286
|
[35] |
PALMQVIST S, JANELIDZE S, QUIROZ Y T, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders[J]. JAMA, 2020, 324(8): 772-781. doi: 10.1001/jama.2020.12134
|
[36] |
JANELIDZE S, MATTSSON N, PALMQVIST S, et al. Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia[J]. Nat Med, 2020, 26(3): 379-386. doi: 10.1038/s41591-020-0755-1
|
[37] |
MATTSSON N, ANDREASSON U, ZETTERBERG H, et al. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease[J]. JAMA Neurol, 2017, 74(5): 557-566. doi: 10.1001/jamaneurol.2016.6117
|
[38] |
MATTSSON N, CULLEN N C, ANDREASSON U, et al. Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease[J]. JAMA Neurol, 2019, 76(7): 791-799. doi: 10.1001/jamaneurol.2019.0765
|
[39] |
PREISCHE O, SCHULTZ S A, APEL A, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease[J]. Nat Med, 2019, 25(2): 277-283. doi: 10.1038/s41591-018-0304-3
|
[40] |
LU Y, TAN L, WANG X. Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer's disease[J]. Neurosci Bull, 2019, 35(5): 877-888. doi: 10.1007/s12264-019-00361-0
|
[41] |
GEEKIYANAGE H, JICHA G A, NELSON P T, et al. Blood serum miRNA: non-invasive biomarkers for Alzheimer's disease[J]. Exp Neurol, 2012, 235(2): 491-496. doi: 10.1016/j.expneurol.2011.11.026
|
[42] |
XIE B, LIU Z, JIANG L, et al. Increased serum miR-206 level predicts conversion from amnestic mild cognitive impairment to Alzheimer's disease: a 5-year follow-up study[J]. J Alzheimers Dis, 2017, 55(2): 509-520.
|
[43] |
DURAND D, CARNIGLIA L, TURATI J, et al. Amyloid-beta neurotoxicity and clearance are both regulated by glial group Ⅱ metabotropic glutamate receptors[J]. Neuropharmacology, 2017, 123: 274-286. doi: 10.1016/j.neuropharm.2017.05.008
|
[44] |
XIE B, ZHOU H, LIU W, et al. Evaluation of the diagnostic value of peripheral BDNF levels for Alzheimer's disease and mild cognitive impairment: results of a meta-analysis[J]. Int J Neurosci, 2020, 130(3): 218-230. doi: 10.1080/00207454.2019.1667794
|
[45] |
BERTRAM L, TANZI R E. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses[J]. Nat Rev Neurosci, 2008, 9(10): 768-778. doi: 10.1038/nrn2494
|
[46] |
TANZI R E, BERTRAM L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective[J]. Cell, 2005, 120(4): 545-555. doi: 10.1016/j.cell.2005.02.008
|
[47] |
MCKHANN G M, KNOPMAN D S, CHERTKOW H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7(3): 263-269. doi: 10.1016/j.jalz.2011.03.005
|
[48] |
LI J Q, TAN L, WANG H F, et al. Risk factors for predicting progression from mild cognitive impairment to Alzheimer's disease: a systematic review and meta-analysis of cohort studies[J]. J Neurol Neurosurg Psychiatry, 2016, 87(5): 476-484. doi: 10.1136/jnnp-2014-310095
|