Volume 22 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
XU Ruiyao, YAN Xiaoning, HUANG Yongmei, JING Huiling, ZHAO Chan, WANG Yasha, SUN Liping, ZHAO Yiding. Establishment of a prediction model of risk factors for psoriasis vulgaris based on machine learning[J]. Chinese Journal of General Practice, 2024, 22(10): 1656-1659. doi: 10.16766/j.cnki.issn.1674-4152.003705
Citation: XU Ruiyao, YAN Xiaoning, HUANG Yongmei, JING Huiling, ZHAO Chan, WANG Yasha, SUN Liping, ZHAO Yiding. Establishment of a prediction model of risk factors for psoriasis vulgaris based on machine learning[J]. Chinese Journal of General Practice, 2024, 22(10): 1656-1659. doi: 10.16766/j.cnki.issn.1674-4152.003705

Establishment of a prediction model of risk factors for psoriasis vulgaris based on machine learning

doi: 10.16766/j.cnki.issn.1674-4152.003705
Funds:

 SZY-KJCYC-2023-005

 2021ZDLSF04-12

 2019ZDLSF04-08

  • Received Date: 2024-02-28
    Available Online: 2024-12-28
  •   Objective  This study aims to identify sensitive indicators and their combinations to distinguish psoriasis, providing support for augmenting diagnostic evaluations and clinical decisions.  Methods  A total of 301 patients with psoriasis vulgaris from multiple centers, who visited from November 1, 2019 to October 31, 2021, were included. Data were collected on general characteristics, psoriasis scale information, TCM syndrome, and laboratory tests. Six machine learning algorithms were used to construct and verify the classification model for predicting mild and severe psoriasis. The classification performance of the models was evaluated by the parameters of receiver operating characteristic (ROC) area under the curve (AUC), precision, recall, and accuracy.  Result  The Naive Bayesian Model achieve an AUC of 0.801 4, while the AUC values of the other implicit classification models of logistic regression, SVM, random forest, AdaBoost, and SGD were 0.759 1, 0.754 6, 0.800 4, 0.712 6, and 0.773 7, respectively. Both Bayesian and random forest models had true positive rates of more than 80% in the ROC curve.  Conclusion  "DLQI", "TCM syndrome", "Baso", "PDW", and "Onset season" were found as key indicators for predicting psoriasis severity. Machine learning and data mining can use real-world clinical data to develop predictive models for psoriasis risk factors, providing a basis for early disease assessment and medical decision-making.

     

  • loading
  • [1]
    中华医学会皮肤性病学分会银屑病专业委员会, 中国银屑病诊疗指南(2023版)[J]. 中华皮肤科杂志, 2023, 56(7): 573-625.

    Psoriasis Professional Committee of Chinese Society of Dermatology and Venereology, Guidelines for the Diagnosis and Treatment of Psoriasis in China (2023 Edition)[J]. Chinese Journal of Dermatology, 2023, 56(7): 573-625.
    [2]
    史玉玲. 《中国银屑病诊疗指南(2023版)》解读[J]. 同济大学学报(医学版), 2023, 44(5): 631-633.

    SHI Y L. Interpretation of the Guidelines for the Diagnosis and Treatment of Psoriasis in China (2023 Edition)[J]. Journal of Tongji University (Medical Science), 2023, 44(5): 631-633.
    [3]
    ROWE M. An introduction to machine learning for clinicians[J]. Acad Med, 2019, 94(10): 1433-1436. doi: 10.1097/ACM.0000000000002792
    [4]
    TUNTHANATHIP T, SAE-HENG S, OEARSAKUL T, et al. Machine learning applications for the prediction of surgical site infection in neurological operations[J]. Neurosurgical focus, 2019, 47(2): E7. DOI: 10.3171/2019.5.FOCUS19241.
    [5]
    ADLER E D, VOORS A A, KLEIN L, et al. Improving risk prediction in heart failure using machine learning[J]. Eur J Heart Fail, 2020, 22(1): 139-147. doi: 10.1002/ejhf.1628
    [6]
    赵辨. 中国临床皮肤病学[M]. 2版. 南京: 江苏凤凰科学技术出版社, 2017: 1104-1126.

    ZHAO B. Chinese Journal of Clinical Dermatology[M]. 2 Edition. Nanjing: Jiangsu Phoenix Science and Technology Press, 2017: 1104-1126.
    [7]
    HERATER F, BITTNER Z, CODREA M C, et al. Platelets aggregate with neutrophils and promote skin pathology in psoriasis[J]. Front Immunol, 2019, 101867. DOI: 10.3389/fimmu.2019.01867.
    [8]
    徐黎明, 王力, 范志佳, 等. 血小板相关参数在银屑病中的临床价值探讨[J]. 检验医学, 2019, 34(4): 335-338.

    XU L M, WANG L, FAN Z J, et al. Clinical value of platelet-related parameters in psoriasis[J]. Laboratory Medicine, 2019, 34(4): 335-338.
    [9]
    ZHOU J, LI Y, GUO X. Predicting psoriasis using routine laboratory tests withrandom forest[J]. PLoS One, 2021, 16(10): e258768. DOI: 10.1371/journal.pone.0258768.
    [10]
    杨庆琪, 刘芳, 李园园. 不同分型分期银屑病患者外周血指标的初步分析[J]. 中国疗养医学, 2021, 30(6): 587-591.

    YANG Q Q, LIU F, LI Y Y. Preliminary analysis of peripheral blood indexes in patients with psoriasis at different types and stages[J]. Chinese Healing Medicine, 2021, 30(6): 587-591.
    [11]
    LIU Z, PERRY L A, MORGAN V. The association between platelet indices and presence and severity of psoriasis: a systematic review and meta-analysis[J]. Clin Exp Med, 2023, 23(2): 333-346.
    [12]
    SIRIN M C, KORKMAZ S, ERTURAN I, et al. Evaluation of monocyte to HDL cholesterol ratio and other inflammatory markers in patients with psoriasis[J]. An Bras Dermatol, 2020, 95(5): 575-582. doi: 10.1016/j.abd.2020.02.008
    [13]
    HASHIMOTO T, ROSEN J D, SANDERS K M, et al. Possible roles of basophils in chronic itch[J]. Exp Dermatol, 2019, 28(12): 1373-1379.
    [14]
    殷文浩, 金梦祝, 戴晴. 火针配合针刺治疗小腿斑块状银屑病的效果观察[J]. 中华全科医学, 2022, 20(1): 117-120. doi: 10.16766/j.cnki.issn.1674-4152.002291

    YIN W H, JIN M Z, DAI Q. Effect of fire acupuncture combined with acupuncture in the treatment of calf plaque psoriasis[J]. Chinese Journal of General Practice, 2022, 20(1): 117-120. doi: 10.16766/j.cnki.issn.1674-4152.002291
    [15]
    李爱君, 母淑娟, 姚瑶, 等. 中医对糖皮质激素药理作用理解的探讨[J]. 山西医药杂志, 2018, 47(6): 700-701.

    LI A J, MU S J, YAO Y, et al. Discussion on the understanding of the pharmacological effects of glucocorticoids in traditional Chinese medicine[J]. Shanxi Medical Journal, 2018, 47(6): 700-701.
    [16]
    高酥, 张家瑜, 陈易, 等. 链球菌感染与银屑病相关性探究[J]. 皮肤病与性病, 2021, 43(3): 340-341.

    GAO S, ZHANG J Y, CHEN Y, et al. Correlation between streptococcal infection and psoriasis[J]. Dermatology & STD, 2021, 43(3): 340-341.
    [17]
    GAMONAL S B L, GAMONAL A C C, MARQUES N C V, et al. Is vitamin D status relevant to psoriasis and psoriatic arthritis? A retrospective cross-sectional study[J]. Sao Paulo Med J, 2022, 141(3): e2022216. DOI: 10.1590/1516-3180.2022.0216.R1.01072022.
    [18]
    黄珊, 白彦萍. 基于中医理论探究银屑病的季节规律性[J]. 中华中医药杂志, 2021, 36(10): 6209-6211.

    HUANG S, BAI Y P. Exploring the Seasonal Regularity of Psoriasis Based on Traditional Chinese Medicine Theory[J]. Chinese Journal of Traditional Chinese Medicine, 2021, 36(10): 6209-6211.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (53) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return