Citation: | CHENG Cui, GUO Suyang, ZHANG Huihui, WEI Li, LI Yan, WANG Lihua, JIANG Hao. Expression of cuprotosis-related gene LIPT1 in endometrial cancer and its clinical significance[J]. Chinese Journal of General Practice, 2024, 22(12): 2029-2032. doi: 10.16766/j.cnki.issn.1674-4152.003790 |
[1] |
林一禾, 庄晓苹, 金纬纬. 子宫内膜癌患者miR-30b和miR-96水平及与预后的关系[J]. 中华全科医学, 2021, 19(1): 73-76, 107. doi: 10.16766/j.cnki.issn.1674-4152.001734
LIN Y H, ZHONG X P, JIN W W. Levels of miR-30b and miR-96 in patients with endometrial cancer and the relationship with prognosis[J]. Chinese Journal of General Practice, 2021, 19(1): 73-76, 107. doi: 10.16766/j.cnki.issn.1674-4152.001734
|
[2] |
姚田, 马文娟. RP11-444D3.1与SOX5基因共表达激活cofilin/LIMK/Rac信号通路介导子宫内膜癌侵袭机制研究[J]. 陕西医学杂志, 2023, 52(4): 390-394.
YAO T, MA W J. Co-expression of RP11-444D3.1 and SOX5 gene activates cofilin/LIMK/Rac signalling pathway to mediate the invasive mechanism of endometrial cancer[J]. Shaanxi Medical Journal, 2023, 52(4): 390-394.
|
[3] |
KAHLSON M A, DIXON S J. Copper-induced cell death[J]. Science, 2022, 375(6586): 1231-1232. doi: 10.1126/science.abo3959
|
[4] |
OLIVERI V. Selective targeting of cancer cells by copper ionophores: an overview[J]. Front Mol Biosci, 2022, 9: 841814. DOI: 10.3389/fmolb.2022.841814.
|
[5] |
TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261. doi: 10.1126/science.abf0529
|
[6] |
KIM B E, NEVITT T, THIELE D J. Mechanisms for copper acquisition, distribution and regulation[J]. Nat Chem Biol, 2008, 4(3): 176-185. doi: 10.1038/nchembio.72
|
[7] |
JIANG Y C, HUO Z Y, QI X L, et al. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes[J]. Nanomedicine (Lond), 2022, 17(5): 303-324. doi: 10.2217/nnm-2021-0374
|
[8] |
GUPTA G, CAPPELLINI F, FARCAL L, et al. Copper oxide nanoparticles trigger macrophage cell death with misfolding of Cu/Zn superoxide dismutase 1 (SOD1)[J]. Part Fibre Toxicol, 2022, 19(1): 33. DOI: 10.1186/s12989-022-00467-w.
|
[9] |
HE H, ZOU Z, WANG B, et al. Copper oxide nanoparticles induce oxidative DNA damage and cell death via copper ion-Mediated P38 MAPK activation in vascular endothelial cells[J]. Int J Nanomedicine, 2020, 15: 3291-3302. doi: 10.2147/IJN.S241157
|
[10] |
TORT F, FERRER-CORTÈS X, THIÓ M, et al. Mutations in the lipoyltransferase LIPT1 gene cause a fatal disease associated with a specific lipoylation defect of the 2-ketoacid dehydrogenase complexes[J]. Hum Mol Genet, 2014, 23(7): 1907-1915. doi: 10.1093/hmg/ddt585
|
[11] |
FENG A Q, HE L N, CHEN T, et al. A novel cuproptosis-related lncRNA nomogram to improve the prognosis prediction of gastric cancer[J]. Front Oncol, 2022, 12: 957966. DOI: 10.3389/fonc.2022.957966.
|
[12] |
WANG Y X, ZHANG Y F, WANG L R, et al. Development and experimental verification of a prognosis model for cuproptosis-related subtypes in HCC[J]. Hepatol Int, 2022, 16(6): 1435-1447. doi: 10.1007/s12072-022-10381-0
|
[13] |
LI K P, TAN L Y, LI Y Q, et al. Cuproptosis identifies respiratory subtype of renal cancer that confers favorable prognosis[J]. Apoptosis, 2022, 27(11-12): 1004-1014. doi: 10.1007/s10495-022-01769-2
|
[14] |
HUANG X F, ZHOU S J, TÓTH J, et al. Cuproptosis-related gene index: a predictor for pancreatic cancer prognosis, immunotherapy efficacy, and chemosensitivity[J]. Front Immunol, 2022, 13: 978865. DOI: 10.3389/fimmu.2022.978865.
|
[15] |
LEI L, TAN L, SUI L. A novel cuproptosis-related gene signature for predicting prognosis in cervical cancer[J]. Front Genet, 2022, 13: 957744. DOI: 10.3389/fgene.2022.957744.
|
[16] |
LIU Y, LUO G Q, YAN Y L, et al. A pan-cancer analysis of copper homeostasis-related gene lipoyltransferase 1: its potential biological functions and prognosis values[J]. Front Genet, 2022, 13: 1038174. DOI: 10.3389/fgene.2022.1038174.
|
[17] |
CHEN Y. Identification and validation of cuproptosis-related prognostic signature and associated regulatory axis in uterine corpus endometrial carcinoma[J]. Front Genet, 2022, 13: 912037. DOI: 10.3389/fgene.2022.912037.
|