Citation: | QIU Tian, QU Xiangyu, LI Haoling, XIA Wenqing, DAI Hengwen, GU Lin. The relationship between ceRNA network construction and prognosis of hepatocellular carcinoma based on UCSC database[J]. Chinese Journal of General Practice, 2024, 22(12): 2139-2143. doi: 10.16766/j.cnki.issn.1674-4152.003816 |
[1] |
甘景卓. 原发性肝癌中LncRNA OSER1-AS1与miR-612表达的相关性及生物学意义[J]. 现代消化及介入诊疗, 2022, 27(1): 45-50.
GAN J Z. Correlation and biological significance of LncRNA OSER1-AS1 and miR-612 expression in primary hepatocellular carcinoma[J]. Modern Gastroenterology and Interventional Diagnosis and Treatment, 2022, 27(1): 45-50.
|
[2] |
黎作茶, 韦武均, 韦彩成, 等. lncRNA RP5-940J5.9表达水平与肝细胞癌患者预后相关性研究[J]. 右江医学, 2022, 50(3): 181-185.
LI Z T, WEI W J, WEI C C, et al. Correlation between lncRNA RP5-940J5.9 expression level and prognosis of patients with hepatocellular carcinoma[J]. Youjiang Medicine, 2022, 50(3): 181-185.
|
[3] |
盖智敏, 陈颖丽, 刘姝含, 等. 细胞质lncRNA在ceRNA网络中对肝癌的预后作用[J]. 内蒙古大学学报(自然科学版), 2024, 55(1): 54-64.
GAI Z M, CHEN Y L, LIU S H, et al. Prognostic effect of cytoplasmic lncRNA in ceRNA network on liver cancer[J]. Journal of Inner Mongolia University(Natural Science Edition), 2024, 55(1): 54-64.
|
[4] |
孙永红, 陈永林. 胃癌相关长链非编码RNA的作用及其意义[J]. 临床与病理杂志, 2021, 41(4): 892-898.
SUN Y H, CHEN Y L. The role and significance of long non-coding RNA related to gastric cancer[J]. Journal of Clinical and Pathology, 2021, 41(4): 892-898.
|
[5] |
HUANG S, ZHANG J, LAI X, et al. Identification of novel tumor microenvironment-related long noncoding RNAs to determine the prognosis and response to immunotherapy of hepatocellular carcinoma patients[J]. Front Mol Biosci, 2021, 8: 781307. DOI: 10.3389/fmolb.2021.781307.
|
[6] |
周倩, 邵建国. MiRNA在HBV相关肝癌中的研究进展[J]. 南通大学学报(医学版), 2022, 42(3): 257-261.
ZHOU Q, SHAO J G. Research progress of MiRNA in HBV-associated liver cancer[J]. Journal of Nantong University(Medical Science), 2022, 42(3): 257-261.
|
[7] |
ZHANG Y, LUO M, CUI X, et al. Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA[J]. Cell Death Differ, 2022, 29(9): 1850-1863. doi: 10.1038/s41418-022-00970-9
|
[8] |
夏文广, 张浩, 魏川雄, 等. 甲状腺乳头状癌相关ceRNA网络的生物信息学分析[J]. 中华全科医学, 2023, 21(4): 693-697. doi: 10.16766/j.cnki.issn.1674-4152.002962
XIA W G, ZHANG H, WEI C X, et al. Bioinformatics analysis of ceRNA network related to papillary thyroid carcinoma[J]. Chinese Journal of General Practice, 2023, 21(4): 693-697. doi: 10.16766/j.cnki.issn.1674-4152.002962
|
[9] |
卢春苗, 莫书天, 韩创业, 等. KIF2C在肝细胞癌中的作用及ceRNA调控网络构建[J]. 广西医科大学学报, 2023, 40(2): 189-198.
LU C M, MO S T, HAN C Y, et al. The role of KIF2C in hepatocellular carcinoma and the construction of ceRNA regulatory network[J]. Journal of Guangxi Medical University, 2023, 40(2): 189-198.
|
[10] |
闵航. LncRNA GSEC通过miR-101-3p/PSPH/VEGF轴调控肝细胞癌进展的机制研究[D]. 武汉: 武汉科技大学, 2023.
MIN H. Mechanism of LncRNA GSEC regulating hepatocellular carcinoma progression through miR-101-3p/PSPH/VEGF axis[D]. Wuhan: Wuhan University of Science and Technology, 2023.
|
[11] |
张静, 张晓, 张瑞, 等. miR-101-3p通过靶向抑制斯坦尼钙调节蛋白1(STC1)促进巨噬细胞对人肝癌细胞的吞噬作用[J]. 细胞与分子免疫学杂志, 2023, 39(4): 339-344.
ZHANG J, ZHANG X, ZHANG R, et al. miR-101-3p promotes macrophage phagocytosis of human hepatocellular carcinoma cells by targeting inhibition of Stanley calmodulin 1 (STC1)[J]. Journal of Cell and Molecular Immunology, 2023, 39(4): 339-344.
|
[12] |
邵毅博, 王春莉, 杨力. miR-101在肝癌发展中的作用研究[J]. 医用生物力学, 2021, 36(S1): 332.
SHAO Y B, WANG C L, YANG L. Study of the role of miR-101 in the development of liver cancer[J]. Medical Biomechanics, 2021, 36(S1): 332.
|
[13] |
MA X L, TANG W G, YANG M J, et al. Serum STIP1, a novel indicator for microvascular invasion, predicts outcomes and treatment response in hepatocellular carcinoma[J]. Front Oncol, 2020, 10: 511. DOI: 10.3389/fonc.2020.00511.
|
[14] |
CHAO A, LIAO M J, CHEN S H, et al. JAK2-Mediated phosphorylation of stress-induced phosphoprotein-1 (STIP1) in human cells[J]. Int J Mol Sci, 2022, 23(5): 2420. DOI: 10.3390/ijms23052420.
|
[15] |
DOURADO M R, ELSERAGY A, DA COSTA B C, et al. Stress induced phosphoprotein 1 overexpression controls proliferation, migration and invasion and is associated with poor survival in oral squamous cell carcinoma[J]. Front Oncol, 2023, 12: 1085917. DOI: 10.3389/fonc.2022.1085917.
|
[16] |
XIA Y, CHEN J, LIU G, et al. STIP1 knockdown suppresses colorectal cancer cell proliferation, migration and invasion by inhibiting STAT3 pathway[J]. Chem Biol Interact, 2021, 341: 109446. DOI: 10.1016/j.cbi.2021.109446.
|
[17] |
KRAFFT U, TSCHIRDEWAHN S, HESS J, et al. STIP1 tissue expression is associated with survival in chemotherapy-treated bladder cancer patients[J]. Pathol Oncol Res, 2020, 26(2): 1243-1249. doi: 10.1007/s12253-019-00689-y
|
[18] |
LI R, LI P, WANG J, et al. STIP1 down-regulation inhibits glycolysis by suppressing PKM2 and LDHA and inactivating the Wnt/β-catenin pathway in cervical carcinoma cells[J]. Life Sci, 2020, 258: 118190. DOI: 10.1016/j.lfs.2020.118190.
|
[19] |
WANG J H, GONG C, GUO F J, et al. Knockdown of STIP1 inhibits the invasion of CD133 positive cancer stem like cells of the osteosarcoma MG63 cell line via the PI3K/Akt and ERK1/2 pathways[J]. Int J Mol Med, 2020, 46(6): 2251-2259.
|
[20] |
WANG K, JIANG S, HUANG A, et al. GOLPH3 promotes cancer growth by interacting with STIP1 and regulating telomerase activity in pancreatic ductal adenocarcinoma[J]. Front Oncol, 2020, 10: 575358. DOI: 10.3389/fonc.2020.575358.
|