Citation: | ZENG Wei, TANG Jubin, CHEN Xiangzhou, CHEN Wei, YANG Dan, ZHU Jinfeng. Screening novel targets for combination immunotherapy of colorectal cancer based on cancer immune cycle[J]. Chinese Journal of General Practice, 2025, 23(1): 31-35. doi: 10.16766/j.cnki.issn.1674-4152.003829 |
[1] |
POULILIOU S, NIKOLAIDIS C, DROSATOS G. Current trends in cancer immunotherapy: a literature-mining analysis[J]. Cancer Immunol Immun, 2020, 69(12): 2425-2439. doi: 10.1007/s00262-020-02630-8
|
[2] |
YAO Z C, LIN Z Y, WU W J. Global research trends on immunotherapy in cancer: a bibliometric analysis[J]. Hum Vaccines, 2023, 19(2): 2219191. DOI: 10.1080/21645515.2023.2219191.
|
[3] |
ZHANG H Y, YU H Y, ZHAO G X, et al. Global research trends in immunotherapy for glioma: a comprehensive visualization and bibliometric analysis[J]. Front Endocrinol, 2023, 14: 1273634. DOI: 10.3389/fendo.2023.1273634.
|
[4] |
LIU Y G, JIANG S T, ZHANG L, et al. Worldwide productivity and research trend of publications concerning tumor immune microenvironment (TIME): a bibliometric study[J]. Eur J Med Res, 2023, 28(1): 229. DOI: 10.1186/s40001-023-01195-3.
|
[5] |
TAKEI S, TANAKA Y, LIN Y T, et al. Multiomic molecular characterization of the response to combination immunotherapy in MSS/pMMR metastatic colorectal cancer[J]. J Immunother Cancer, 2024, 12(2): e008210. DOI: 10.1136/jitc-2023-008210.
|
[6] |
MELLMAN I, CHEN D S, POWLES T, et al. The cancer-immunity cycle: indication, genotype, and immunotype[J]. Immunity, 2023, 56(10): 2188-2205. doi: 10.1016/j.immuni.2023.09.011
|
[7] |
HU Y, SUN H B, SHI W, et al. Immunogram defines four cancer-immunity cycle phenotypes with distinct clonal selection patterns across solid tumors[J]. J Transl Med, 2024, 22(1): 69. DOI: 10.1186/s12967-023-04765-5.
|
[8] |
YANG J X, ZHANG C F. Regulation of cancer-immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020, 12(4): e1612. DOI: 10.1002/wnan.1612.
|
[9] |
BAIDOIN F, ELSHIWY K, ELKERAIE Y, et al. Colorectal cancer epidemiology: recent trends and impact on outcomes[J]. Curr Drug Targets, 2021, 22(9): 998-1009. doi: 10.2174/18735592MTEx9NTk2y
|
[10] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
|
[11] |
ARAGHI M, SOERJOMATARAM I, JENKINS M, et al. Global trends in colorectal cancer mortality: projections to the year 2035[J]. Int J Cancer, 2019, 144(12): 2992-3000. doi: 10.1002/ijc.32055
|
[12] |
JACOB S, JURINOVIC V, LAMPERT C, et al. The association of immunosurveillance and distant metastases in colorectal cancer[J]. J Cancer Res Clin, 2021, 147(11): 3333-3341. doi: 10.1007/s00432-021-03753-w
|
[13] |
曾薇, 刘翼, 李文婷, 等. 结直肠癌中差异性表达的外泌体lncRNA功能富集及通路分析[J]. 中华全科医学, 2022, 20(1): 141-143, 164.
ZENG W, LIU Y, LI W T, et al. Functional enrichment and pathway analysis of differential expression of exosome lncRNA in colorectal cancer[J]. Chinese Journal of General Practice, 2022, 20(1): 141-143, 164.
|
[14] |
GUPTA S. Screening for colorectal cancer[J]. Hematol Oncol Clin North Am, 2022, 36(3): 393-414. doi: 10.1016/j.hoc.2022.02.001
|
[15] |
LUN W J, LUO C H. Second primary colorectal cancer in adults: a SEER analysis of incidence and outcomes[J]. BMC Gastroenterol, 2023, 23(1): 253. DOI: 10.1186/s12876-023-02893-2.
|
[16] |
BAGCHI S, YUAN R, ENGLEMAN E G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance[J]. Annu Rev Pathol, 2021, 16: 223-249. DOI: 10.1146/annurev-pathol-042020-042741.
|
[17] |
CARGILL M, VENKATARAMAN R, LEE S. DEAD-Box RNA helicases and genome stability[J]. Genes (Basel), 2021, 12(10): 1471. DOI: 10.3390/genes12101471.
|
[18] |
ZHENG B C, CHEN X D, LING Q Y, et al. Role and therapeutic potential of DEAD-box RNA helicase family in colorectal cancer[J]. Front Oncol, 2023, 13: 1278282. DOI: 10.3389/fonc.2023.1278282.
|
[19] |
ALI M A M. The DEAD-box protein family of RNA helicases: sentinels for a myriad of cellular functions with emerging roles in tumorigenesis[J]. Int J Clin Oncol, 2021, 26(5): 795-825. doi: 10.1007/s10147-021-01892-1
|
[20] |
WANG X Q, ZHANG B, LI Y W, et al. DEAD-box Helicase 27 promotes hepatocellular carcinoma progression through ERK signaling[J]. Technol Cancer Res Treat, 2021, 20: 15330338211055953. DOI: 10.1177/15330338211055953.
|
[21] |
LI S, MA J F, ZHENG A, et al. DEAD-box helicase 27 enhances stem cell-like properties with poor prognosis in breast cancer[J]. J Transl Med, 2021, 19(1): 334. DOI: 10.1186/s12967-021-03011-0.
|