Citation: | BAI Wenhua, LI Xiangpei, LIU Juan, LIU Yan, JIANG Zhen. Correlations between miR-223/ mTOR/ S6K pathway and the activity of rheumatoid arthritis and antibody levels[J]. Chinese Journal of General Practice, 2025, 23(2): 207-210. doi: 10.16766/j.cnki.issn.1674-4152.003868 |
[1] |
LIU S, MA H H, ZHANG H X, et al. Recent advances on signaling pathways and their inhibitors in rheumatoid arthritis[J]. Clin Immunol, 2021, 230: 108793. DOI: 10.1016/j.clim.2021.108793.
|
[2] |
JIN Q B, REN F H, SONG P. Innovate therapeutic targets for autoimmune diseases: insights from proteome-wide mendelian randomization and Bayesian colocalization[J]. Autoimmunity, 2024, 57(1): 2330392. DOI: 10.1080/08916934.2024.2330392.
|
[3] |
CHOY E H. Clinical significance of Janus kinase inhibitor selectivity[J]. Rheumatology (Oxford), 2019, 58(6): 953-962.
|
[4] |
NEUMANN E, HECK C, MULLER-LADNER U. Recent developments in the synovial fibroblast pathobiology field in rheumatoid arthritis[J]. Curr Opin Rheumatol, 2024, 36(1): 69-75.
|
[5] |
ZHENG Y, WEI K, JIANG P, et al. Macrophage polarization in rheumatoid arthritis: signaling pathways, metabolic reprogramming, and crosstalk with synovial fibroblasts[J]. Front Immunol, 2024, 15: 1394108. DOI: 10.3389/fimmu.2024.1394108.
|
[6] |
PANWAR V, SⅡNGH A, BHATT M, et al. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease[J]. Signal Transduct Target Ther, 2023, 8(1): 375.
|
[7] |
RAMASUBBU K, DEVI RAJESWARI V. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review[J]. Mol Cell Biochem, 2023, 478(6): 1307-1324.
|
[8] |
QI H, YU M M, FAN X Q, ZHOU Y W, et al. Methionine and leucine promote mTOR gene transcription and milk synthesis in mammary epithelial cells through the eEF1Bα-UBR5-ARID1A signaling[J]. J Agric Food Chem, 2024, 72(20): 11733-11745.
|
[9] |
BARKER B E, HANLON M M, MARZAIOLI V, et al. The mammalian target of rapamycin contributes to synovial fibroblast pathogenicity in rheumatoid arthritis[J]. Front Med (Lausanne), 2023, 10: 1029021. DOI: 10.3389/fmed.2023.1029021.
|
[10] |
KITAYAMA K, KAWAMOTO T, KAWAKAMI Y, et al. Regulatory roles of miRNAs 16, 133a, and 223 on osteoclastic bone destruction caused by breast cancer metastasis[J]. Int J Oncol, 2021, 59(5): 97.
|
[11] |
OTON-GONZALEZ L, MAZZIOTTA C, IAQUINTA M R, et al. Genetics and epigenetics of bone remodeling and metabolic bone diseases[J]. Int J Mol Sci, 2022, 23(3): 1500.
|
[12] |
郑智琴, 施加才. 抗环瓜氨酸多肽抗体及类风湿因子联合检测用于类风湿关节炎的价值[J]. 中国临床医生杂志, 2022, 50(8): 923-925.
ZHENG Z Q, SHI J C. The value of combined detection of anti-CCP antibody with rheumatoid factor in rheumatoid arthritis[J]. Chin J Clinician, 2022, 50(8): 923-925.
|
[13] |
王涛, 李志军. 类风湿关节炎的诊断与治疗[J]. 中华全科医学, 2020, 18(2): 170-171. http://www.zhqkyx.net/article/id/db5b4b90-cd84-4faf-aea9-553bd1709ec4
WANG T, LI Z J. The diagnosis and treatment of rheumatoid arthritis[J]. Chinese Journal of General Practice, 2020, 18(2): 170-171. http://www.zhqkyx.net/article/id/db5b4b90-cd84-4faf-aea9-553bd1709ec4
|
[14] |
KIM K W, KIM B M, MOON H W, et al. Role of C-reactive protein in osteoclastogenesis in rheumatoid arthritis[J]. Arthritis Res Ther, 2015, 17(1): 41.
|
[15] |
FANG Z, LYU J, WANG J, et al. C-reactive protein promotes the activation of fibroblast-like synoviocytes from patients with rheumatoid arthritis[J]. Front Immunol, 2020, 11: 958. DOI: 10.3389/fimmu.2020.00958.
|
[16] |
SVANBERG C, ENOCSSON H, GOVENDER M, et al. Conformational state of C-reactive protein is critical for reducing immune complex-triggered type Ⅰ interferon response: implications for pathogenic mechanisms in autoimmune diseases imprinted by type Ⅰ interferon gene dysregulation[J]. J Autoimmun, 2023, 135: 102998. DOI: 10.1016/j.jaut.2023.102998.
|
[17] |
RIZO-TÉLLEZ S A, SEKHERI M, FILEP J G. C-reactive protein: a target for therapy to reduce inflammation[J]. Front Immunol, 2023, 14: 1237729. DOI: 10.3389/fimmu.2023.1237729.
|
[18] |
CHEN S Y, TSAI T C, LI Y T, et al. Interleukin-23 mediates osteoclastogenesis in collagen-induced arthritis by modulating microRNA-223[J]. Int J Mol Sci, 2022, 23(17): 9718. DOI: 10.3390/ijms23179718.
|
[19] |
HUANG Y, LU D, MA W, et al. miR-223 in exosomes from bone marrow mesenchymal stem cells ameliorates rheumatoid arthritis via downregulation of NLRP3 expression in macrophages[J]. Mol Immunol, 2022, 143: 68-76.
|
[20] |
LAPIC I, PADOAN A, BOZZATO D, et al. Erythrocyte sedimentation rate and C-reactive protein in acute inflammation[J]. Am J Clin Pathol, 2020, 153(1): 14-29.
|
[21] |
SEBASTIANI G D, FULCI V, NICCOLINI S, et al. Overexpression of miR-223 in T-lymphocytes of early rheumatoid arthritis patients[J]. Clin Exp Rheumatol, 2011, 29(6): 1058-1059.
|
[22] |
LU M C, YU C L, CHEN H C, et al. Increased miR-223 expression in T cells from patients with rheumatoid arthritis leads to decreased insulin-like growth factor-1-mediated interleukin-10 production[J]. Clin Exp Immunol, 2014, 177(3): 641-651.
|
[23] |
WYMAN B, PERL A. Metabolic pathways mediate pathogenesis and offer targets for treatment in rheumatic diseases[J]. Curr Opin Rheumatol, 2020, 32(2): 184-191.
|