Volume 23 Issue 2
Feb.  2025
Turn off MathJax
Article Contents
ZHANG Chunli, LI Hongyan. Research progress on iron death in Parkinson ' s disease[J]. Chinese Journal of General Practice, 2025, 23(2): 292-295. doi: 10.16766/j.cnki.issn.1674-4152.003888
Citation: ZHANG Chunli, LI Hongyan. Research progress on iron death in Parkinson ' s disease[J]. Chinese Journal of General Practice, 2025, 23(2): 292-295. doi: 10.16766/j.cnki.issn.1674-4152.003888

Research progress on iron death in Parkinson ' s disease

doi: 10.16766/j.cnki.issn.1674-4152.003888
Funds:

 31560270

  • Received Date: 2024-02-20
    Available Online: 2025-03-27
  • Parkinson ' s disease (PD) is an age-dependent late-onset neurodegenerative disorder characterized by classic motor and non-motor symptoms. At present, the etiology and mechanism of PD are not fully understood, but in addition to the degeneration of dopaminergic neurons in the substantia nigra densa and the abnormal deposition of α-synuclein in their cells, it has been gradually discovered that a variety of new cell death modes are involved in the development of PD, including pyroptosis, autophagy, and iron death. Cell iron death, as a new type of programmed cell death, is overdriven by lipid peroxidation and regulated by iron dependence, which has common pathophysiological features with PD. Cellular iron death is mainly caused by excessive iron deposition, imbalance of amino acid metabolism, lipid peroxidation, and mitochondrial damage, which lead to nerve cell toxicity, and eventually lead to neuronal cell death and loss. Therefore, some related drugs, such as iron chelating agents, iron death inhibitors, and lipophilic antioxidants, can inhibit cell iron death by inhibiting metal ion reaction, reducing iron metabolism imbalance and oxidative stress damage, so as to intervene in the pathogenesis and progression of PD. Based on this, this paper summarized the potential pathogenic mechanism of iron death in PD and the molecular mechanism of selective inhibition of cell iron death in the remission and treatment of PD, laying a foundation for further development of targeted intervention and treatment of iron death. At the same time, studying the mechanism of cell iron death can provide new ideas and directions for future drug development, help improve the quality of life of PD patients, delay the progression of the disease, and provide more possibilities for the treatment and management of PD.

     

  • loading
  • [1]
    夏雪芬, 杨碎丽, 刘炯炯, 等. 基于老年综合评估的护理干预对老年帕金森病患者生活质量的影响[J]. 中华全科医学, 2024, 22(1): 163-167. doi: 10.16766/j.cnki.issn.1674-4152.003355

    XIA X F, YANG S L, LIU J J, et al. Effect of nursing intervention based on geriatric comprehensive assessmenton quality of life in elderly patients with Parkinson ' s disease[J]. Chinese Journal of General Practice, 2024, 22(1): 163-167. doi: 10.16766/j.cnki.issn.1674-4152.003355
    [2]
    BANDRES-CIGA S, DIEZ-FAIREN M, KIM J J, et al. Genetics of Parkinson ' s disease: an introspection of its journey towards precision medicine[J]. Neurobiol Dis, 2020, 137: 104782. DOI: 10.1016/j.nbd.2020.104782.
    [3]
    WILLIS A W, ROBERTS E, BECK J C, et al. Incidence of Parkinson disease in North America[J]. NPJ Parkinsons Dis, 2022, 8(1): 170. DOI: 10.1038/s41531-022-00410-y.
    [4]
    TANG D, CHEN X, KANG R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107-125.
    [5]
    FANG X, ARDEHALI H, MIN J, et al. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease[J]. Nat Rev Cardiol, 2023, 20(1): 7-23.
    [6]
    DAVID S, JHELUM P, RYAN F, et al. Dysregulation of iron homeostasis in the central nervous system and the role of ferroptosis in neurodegenerative disorders[J]. Antioxid Redox Signal, 2022, 37(1-3): 150-170.
    [7]
    常宇宸, 李京波. 心肌梗死中铁死亡标志物研究进展[J]. 诊断学理论与实践, 2023, 22(2): 197-202.

    CHANG Y C, LI J B. Advances in biological markers of ferroptosis in myocardial infarction[J]. Diagnostic theory and practice, 2023, 22(2): 197-202.
    [8]
    STOCKWELL B R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421.
    [9]
    XU S, HE Y, LIN L, et al. The emerging role of ferroptosis in intestinal disease[J]. Cell Death Dis, 2021, 12(4): 289. DOI: 10.1038/s41419-021-03559-1.
    [10]
    FU C, CAO N, ZENG S, et al. Role of mitochondria in the regulation of ferroptosis and disease[J]. Front Med(Lausanne), 2023, 10: 1301822. DOI: 10.3389/fmed.2023.1301822.
    [11]
    ANGELOVA P R, CHOI M L, BEREZHNOV A V, et al. Correction: alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation[J]. Cell Death Differ, 2021, 28(5): 1755. DOI: 10.1038/s41418-020-00634-6.
    [12]
    WISE R M, WAGENER A, FIETZEK U M, et al. Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in Parkinson ' s disease and neurodegeneration with brain iron accumulation disorders[J]. Neurobiol Dis, 2022, 175: 105920. DOI: 10.1016/j.nbd.2022.105920.
    [13]
    AN Y, LI S, HUANG X, et al. The role of copper homeostasis in brain disease[J]. Int J Mol Sci, 2022, 23(22): 13850. DOI: 10.3390/ijms232213850.
    [14]
    GU Q, LIU X, ZENG Q, et al. The protective role of cigarette smoking against Parkinson ' s disease via moderation of the interaction between iron deposition in the nigrostriatal pathway and clinical symptoms[J]. Quant Imaging Med Surg, 2022, 12(7): 3603-3624.
    [15]
    MOCHIZUKI H, CHOONG C J, BABA K. Parkinson ' s disease and iron[J]. J Neural Transm(Vienna), 2020, 127(2): 181-187.
    [16]
    RIEDERER P, NAGATSU T, YOUDIM M B H, et al. Lewy bodies, iron, inflammation and neuromelanin: pathological aspects underlying Parkinson ' s disease[J]. J Neural Transm(Vienna), 2023, 130(5): 627-646.
    [17]
    LEE J, HYUN D H. The interplay between intracellular iron homeostasis and neuroinflammation in neurodegenerative diseases[J]. Antioxidants(Basel), 2023, 12(4): 918. DOI: 10.3390/antiox12040918.
    [18]
    BI M, DU X, JIAO Q, et al. α-synuclein regulates iron homeostasis via preventing Parkin-mediated DMT1 ubiquitylation in Parkinson ' s disease models[J]. ACS Chem Neurosci, 2020, 11(11): 1682-1691.
    [19]
    郭兴, 胡明慧, 孙亚男, 等. 脂质在帕金森病发生中的作用及机制研究进展[J]. 新乡医学院学报, 2024, 41(4): 392-396.

    GUO X, HU M H, SUN Y N, et al. Research progress on the role and mechanism of lipids in the occurrence of Parkinson's disease[J]. Journal of Xinxiang Medical University, 2024, 41(4): 392-396.
    [20]
    CERASUOLO M, DI MEO I, AURIEMMA M C, et al. Iron and ferroptosis more than a suspect: beyond the most common mechanisms of neurodegeneration for new therapeutic approaches to cognitive decline and dementia[J]. Int J Mol Sci, 2023, 24(11): 9637. DOI: 10.3390/ijms24119637.
    [21]
    WU W, ZIEMANN M, HUYNH K, et al. Activation of Hippo signaling pathway mediates mitochondria dysfunction and dilated cardiomyopathy in mice[J]. Theranostics, 2021, 11(18): 8993-9008.
    [22]
    SMITS M A J, SCHOMAKERS B V, VAN WEEGHEL M, et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction[J]. Hum Reprod, 2023, 38(11): 2208-2220.
    [23]
    ZHANG B, PAN C, FENG C, et al. Role of mitochondrial reactive oxygen species in homeostasis regulation[J]. Redox Rep, 2022, 27(1): 45-52.
    [24]
    XU C, SUN S, JOHNSON T, et al. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity[J]. Cell Rep, 2021, 35(11): 109235. DOI: 10.1016/j.celrep.2021.109235.
    [25]
    ASANUMA M, MIYAZAKI I. Glutathione and related molecules in Parkinsonism[J]. Int J Mol Sci, 2021, 22(16): 8689. DOI: 10.3390/ijms22168689.
    [26]
    VIKTORINOVA A. Future perspectives of oxytosis/ferroptosis research in neurodegeneration diseases[J]. Cell Mol Neurobiol, 2023, 43(6): 2761-2768.
    [27]
    URSINI F, MAIORINO M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4[J]. Free Radic Biol Med, 2020, 152: 175-185.
    [28]
    ZHANG Y, SWANDA R V, NIE L, et al. mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation[J]. Nat Commun, 2021, 12(1): 1589. DOI: 10.1038/s41467-021-21841-w.
    [29]
    CAO Y, XIAO W, LIU S, et al. Ferroptosis: underlying mechanism and the crosstalk with other modes of neuronal death after intracerebral hemorrhage[J]. Front Cell Neurosci, 2023, 17: 1080344. DOI: 10.3389/fncel.2023.1080344.
    [30]
    GUTBIER S, KYRIAKOU S, SCHILDKNECHT S, et al. Design and evaluation of bi-functional iron chelators for protection of dopaminergic neurons from toxicants[J]. Arch Toxicol, 2020, 94(9): 3105-3123.
    [31]
    DEVOS D, LABREUCHE J, RASCOL O, et al. Trial of deferiprone in Parkinson ' s disease[J]. N Engl J Med, 2022, 387(22): 2045-2055.
    [32]
    KAISER S, ZHANG L, MOLLENHAUER B, et al. A proteogenomic view of Parkinson ' s disease causality and heterogeneity[J]. NPJ Parkinsons Dis, 2023, 9(1): 24. DOI: 10.1038/s41531-023-00461-9.
    [33]
    BOLSHAKOVA O I, BORISENKOVA A A, GOLOMIDOV I M, et al. Fullerenols prevent neuron death and reduce oxidative stress in drosophila Huntington ' s disease model[J]. Cells, 2022, 12(1): 170. DOI: 10.3390/cells12010170.
    [34]
    SHI L, HUANG C, LUO Q, et al. Clioquinol improves motor and non-motor deficits in MPTP-induced monkey model of Parkinson ' s disease through AKT/mTOR pathway[J]. Aging(Albany NY), 2020, 12(10): 9515-9533.
    [35]
    SUN Y, HE L, WANG T, et al. Activation of p62-Keap1-Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells[J]. Mol Neurobiol, 2020, 57(11): 4628-4641.
    [36]
    QIAO W, ZHA M, YANG Y, et al. Pd(17)Se(15) alloy on Se spheres with a high anti-poisoning ability for alcohol fuel electrooxidation[J]. Chem Commun(Camb), 2022, 58(76): 10651-10654.
    [37]
    LA ROSA P, PETRILLO S, TURCHI R, et al. The Nrf2 induction prevents ferroptosis in Friedreich ' s ataxia[J]. Redox Biol, 2021, 38: 101791. DOI: 10.1016/j.redox.2020.101791.
    [38]
    CAI B, ZHONG L, LIU Y, et al. δ-opioid receptor activation inhibits ferroptosis by activating the Nrf2 pathway in MPTP-induced Parkinson disease models[J]. Evid Based Complement Alternat Med, 2023, 2023: 4130937. DOI: 10.1155/2023/4130937.
    [39]
    YANG M, TSUI M G, TSANG J K W, et al. Involvement of FSP1-CoQ(10)-NADH and GSH-GPx-4 pathways in retinal pigment epithelium ferroptosis[J]. Cell Death Dis, 2022, 13(5): 468. DOI: 10.1038/s41419-022-04924-4.
    [40]
    李福军, 姜涛, 郭力甲, 等. Sestrin 2通过Nrf2/xCT途径减轻七氟醚诱导的HT22细胞铁死亡研究[J]. 中华全科医学, 2021, 19(6): 917-920, 1068. doi: 10.16766/j.cnki.issn.1674-4152.001949

    LI F J, JIANG T, GUO L J, et al. Sestrin 2 extenuates neuronal ferroptosis induced by sevoflurane through the Nrf2/xCT pathway[J]. Chinese Journal of General Practice, 2021, 19(6): 917-920, 1068. doi: 10.16766/j.cnki.issn.1674-4152.001949
    [41]
    PRADHAN N, SINGH C, SINGH A. Coenzyme Q10 a mitochondrial restorer for various brain disorders[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(11): 2197-2222.
    [42]
    MISHIMA E, ITO J, WU Z, et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor[J]. Nature, 2022, 608(7924): 778-783.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (16) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return