Volume 23 Issue 3
Mar.  2025
Turn off MathJax
Article Contents
ZHANG Liya, ZHU Pan, JIN Xiamin, JIE Qingqing, CUI Yingbo, CHEN Lili. Differential expression of circular RNAs in the plasma of premature infants with retinopathy[J]. Chinese Journal of General Practice, 2025, 23(3): 383-387. doi: 10.16766/j.cnki.issn.1674-4152.003909
Citation: ZHANG Liya, ZHU Pan, JIN Xiamin, JIE Qingqing, CUI Yingbo, CHEN Lili. Differential expression of circular RNAs in the plasma of premature infants with retinopathy[J]. Chinese Journal of General Practice, 2025, 23(3): 383-387. doi: 10.16766/j.cnki.issn.1674-4152.003909

Differential expression of circular RNAs in the plasma of premature infants with retinopathy

doi: 10.16766/j.cnki.issn.1674-4152.003909
Funds:

 2021KY319

 2021KY324

 2019A21002

 2023Y21

 2022-B17

 2022020405

  • Received Date: 2024-03-21
    Available Online: 2025-05-14
  •   Objective  This study aims to analyze the expression profile changes of circular RNA (circRNA) in the plasma of children with retinopathy of prematurity (ROP).  Methods  Three children with ROP hospitalized at Women and Children's Hospital of Ningbo University from January 2023 to August 2023 were selected as the ROP group, while three children without ROP during the same period were selected as the control group. High-throughput sequencing technology was used to detect and screen for differentially expressed circRNAs in hemorrhagic plasma, followed by bioinformatic analysis including gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Online databases were employed to predict the potential target microRNAs (miRNAs) of circRNA.  Results  Compared with the control group, a total of 108 circRNAs were significantly differentially expressed in the plasma of patients in the ROP group (P<0.05, fold change≥1), with 41 upregulated and 67 downregulated circRNAs. Bioinformatics analysis revealed that pathways such as proton-transporting ATP synthase and cellular metabolism play important roles in the occurrence and development of ROP. The relationship between differentially expressed circRNA and miRNA was predicted using miRanda and psRobot software, and a circRNA-miRNA regulatory network diagram was constructed.  Conclusion  Differential expression of circRNA exists between the ROP group and the control group, suggesting their potential involvement in the occurrence and development of ROP, or as novel molecular markers for diagnosis and treatment of ROP.

     

  • loading
  • [1]
    LIM H W, PERSHING S, MOSHFEGHI D M, et al. Causes of childhood blindness in the united states using the iris® registry (intelligent research in sight)[J]. Ophthalmology, 2023, 130(9): 907-913. doi: 10.1016/j.ophtha.2023.04.004
    [2]
    ZHOU Y D, WANG Z C, ZHOU H X, et al. Identification and clinical significance of tsRNAs and miRNAs in PBMCs of treatment-requiring retinopathy of prematurity[J]. Exp Eye Res, 2023, 232: 109518. DOI: 10.1016/j.exer.2023.109518.
    [3]
    ZHAO K, JIANG Y P, ZHANG J, et al. Celastrol inhibits pathologic neovascularization in oxygen-induced retinopathy by targeting the miR-17-5p/HIF-1α/VEGF pathway[J]. Cell Cycle, 2022, 21(19): 2091-2108. doi: 10.1080/15384101.2022.2087277
    [4]
    VISHWAKARMA S, KAUR I. Molecular mediators and regulators of retinal angiogenesis[J]. Semin Ophthalmol, 2023, 38(2): 124-133. doi: 10.1080/08820538.2022.2152706
    [5]
    MESTER-TONCZAR J, EINZINGER P, HASIMBEGOVIC E, et al. A CircRNA-miRNA-mRNA network for exploring doxorubicin- and myocet-Induced cardiotoxicity in a translational porcine model[J]. Biomolecules, 2023, 13(12): 1711. DOI: 10.3390/biom13121711.
    [6]
    NISAR S, BHAT A A, SINGH M, et al. Insights into the role of circRNAs: biogenesis, characterization, functional, and clinical impact in Human Malignancies[J]. Front Cell Dev Biol, 2021, 9: 617281. DOI: 10.3389/fcell.2021.617281.
    [7]
    KRISTENSEN L S, ANDERSEN M S, STAGSTED L V W, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691. doi: 10.1038/s41576-019-0158-7
    [8]
    JIANG L, WANG X Y, ZHAN X P, et al. Advance in circular RNA modulation effects of heart failure[J]. Gene X, 2020, 5: 100036. DOI: 10.1016/j.gene.2020.100036.
    [9]
    ZHANG C T, GAO R, ZHOU R H, et al. The emerging power and promise of non-coding RNAs in chronic pain[J]. Front Mol Neurosci, 2022, 15: 1037929. DOI: 10.3389/fnmol.2022.1037929.
    [10]
    中华医学会眼科分会眼底病学组. 中国早产儿视网膜病变筛查指南(2014年)[J]. 中华眼科杂志, 2014, 50(12): 933-935. doi: 10.3760/cma.j.issn.0412-4081.2014.12.017

    Group of Fundus Diseases, Chinese Ophthalmological Society. Screening guidelines for retinopathy in premature infants in China (2014)[J]. Chinese Journal of Ophthalmology, 2014, 50(12): 933-935. doi: 10.3760/cma.j.issn.0412-4081.2014.12.017
    [11]
    HUGHES C P, O ' FLYNN N M J, GATHERER M, et al. AAV2/8 anti-angiogenic gene therapy using single-chain antibodies inhibits murine choroidal neovascularization[J]. Mol Ther Methods Clin Dev, 2018, 13: 86-98.
    [12]
    MAHMOUDI E, CAIRNS M J. CircRNA and Ageing[J]. Subcell Biochem, 2023, 102: 249-270.
    [13]
    WAWRZYNIAK O, ZAREBSKA ż, KUCZYN ' SKI K, et al. Protein-related circular RNAs in human pathologies[J]. Cells, 2020, 9(8): 1841. DOI: 10.3390/cells9081841.
    [14]
    ZHOU W Y, CAI Z R, LIU J, et al. Circular RNA: metabolism, functions and interactions with proteins[J]. Mol Cancer, 2020, 19(1): 172. DOI: 10.1186/s12943-020-01286-3.
    [15]
    郑媛媛, 李伟, 陈余清. 环状RNA与肿瘤相关性研究进展[J]. 中华全科医学, 2019, 17(7): 1181-1185. doi: 10.16766/j.cnki.issn.1674-4152.000896

    ZHENG Y Y, LI W, CHEN Y Q. Research progress on the correlation between circRNAs and tumors[J]. Chinese Journal of General Practice, 2019, 17(7): 1181-1185. doi: 10.16766/j.cnki.issn.1674-4152.000896
    [16]
    盛磊, 林慧, 仇妮, 等. 翠云草总黄酮经环状RNA circ_0006528通路抑制结直肠癌恶性生物学行为研究[J]. 实用临床医药杂志, 2022, 26(4): 106-113.

    SHENG L, LIN H, QIU N, et al. Study on total flavonoids from Selaginella uncinata in inhibiting malignant behavior of colorectal cancer cells through circular RNA circ_0006528 pathway[J]. Journal of Clinical Medicine in Practice, 2022, 26(4): 106-113.
    [17]
    刘德慧, 严玉兰. 环状RNA在肺癌诊断及预后中的研究进展[J]. 实用临床医药杂志, 2021, 25(13): 124-128. doi: 10.7619/jcmp.20211851

    LIU D H, YAN Y L. Research progress of circRNAs in diagnosis and prognosis of lung cancer[J]. Journal of Clinical Medicine in Practice, 2021, 25(13): 124-128. doi: 10.7619/jcmp.20211851
    [18]
    ZHANG Y, YUAN F K, LIU L, et al. The role of the miR-21/SPRY2 axis in modulating proangiogenic factors, epithelial phenotypes, and wound healing in corneal epithelial cells[J]. Invest Ophthalmol Vis Sci, 2019, 60(12): 3854-3862. doi: 10.1167/iovs.19-27013
    [19]
    GUAN J T, LI X X, PENG D W, et al. MicroRNA-18a-5p administration suppresses retinal neovascularization by targeting FGF1 and HIF1A[J]. Front Pharmacol, 2020, 11: 276. DOI: 10.3389/fphar.2020.00276.
    [20]
    QIU S K, XIE L, LU C, et al. Gastric cancer-derived exosomal miR-519a-3p promotes liver metastasis by inducing intrahepatic M2-like macrophage-mediated angiogenesis[J]. J Exp Clin Cancer Res, 2022, 41(1): 296. DOI: 10.1186/s13046-022-02499-8.
    [21]
    SHI S Y, JIN Y, SONG H S, et al. MicroRNA-34a attenuates VEGF-mediated retinal angiogenesis via targeting Notch1[J]. Biochem Cell Biol, 2019, 97(4): 423-430. doi: 10.1139/bcb-2018-0304
    [22]
    DESJARLAIS M, WIRTH M, RIVERA J C, et al. MicroRNA-96 promotes vascular repair in oxygen-induced retinopathy-a novel uncovered vasoprotective function[J]. Front Pharmacol, 2020, 11: 13. DOI: 10.3389/fphar.2020.00013.
    [23]
    VISHWAKARMA S, KAUR I. Molecular mediators and regulators of retinal angiogenesis[J]. Semin Ophthalmol, 2023, 38(2): 124-133. doi: 10.1080/08820538.2022.2152706
    [24]
    程峰, 邱兆磊, 郑传明, 等. JAK/STAT信号通路在大鼠重症急性胰腺炎早期作用机制的研究[J]. 中华全科医学, 2023, 21(1): 41-44, 65. doi: 10.16766/j.cnki.issn.1674-4152.002807

    CHENG F, QIU Z L, ZHENG C M, et al. Mechanism of JAK/STAT signaling pathway in the early stage severe acute pancreatitis rats[J]. Chinese Journal of General Practice, 2023, 21(1): 41-44, 65. doi: 10.16766/j.cnki.issn.1674-4152.002807
    [25]
    DU M K, CUI Z H, CHEN D Q, et al. Hypoxia-inducible factor stabilisation-related lncRNAs in retinopathy of prematurity[J]. J Obstet Gynaecol, 2023, 43(1): 2178289. DOI: 10.1080/01443615.2023.2178289.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (26) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return