Citation: | ZHANG Liya, ZHU Pan, JIN Xiamin, JIE Qingqing, CUI Yingbo, CHEN Lili. Differential expression of circular RNAs in the plasma of premature infants with retinopathy[J]. Chinese Journal of General Practice, 2025, 23(3): 383-387. doi: 10.16766/j.cnki.issn.1674-4152.003909 |
[1] |
LIM H W, PERSHING S, MOSHFEGHI D M, et al. Causes of childhood blindness in the united states using the iris® registry (intelligent research in sight)[J]. Ophthalmology, 2023, 130(9): 907-913. doi: 10.1016/j.ophtha.2023.04.004
|
[2] |
ZHOU Y D, WANG Z C, ZHOU H X, et al. Identification and clinical significance of tsRNAs and miRNAs in PBMCs of treatment-requiring retinopathy of prematurity[J]. Exp Eye Res, 2023, 232: 109518. DOI: 10.1016/j.exer.2023.109518.
|
[3] |
ZHAO K, JIANG Y P, ZHANG J, et al. Celastrol inhibits pathologic neovascularization in oxygen-induced retinopathy by targeting the miR-17-5p/HIF-1α/VEGF pathway[J]. Cell Cycle, 2022, 21(19): 2091-2108. doi: 10.1080/15384101.2022.2087277
|
[4] |
VISHWAKARMA S, KAUR I. Molecular mediators and regulators of retinal angiogenesis[J]. Semin Ophthalmol, 2023, 38(2): 124-133. doi: 10.1080/08820538.2022.2152706
|
[5] |
MESTER-TONCZAR J, EINZINGER P, HASIMBEGOVIC E, et al. A CircRNA-miRNA-mRNA network for exploring doxorubicin- and myocet-Induced cardiotoxicity in a translational porcine model[J]. Biomolecules, 2023, 13(12): 1711. DOI: 10.3390/biom13121711.
|
[6] |
NISAR S, BHAT A A, SINGH M, et al. Insights into the role of circRNAs: biogenesis, characterization, functional, and clinical impact in Human Malignancies[J]. Front Cell Dev Biol, 2021, 9: 617281. DOI: 10.3389/fcell.2021.617281.
|
[7] |
KRISTENSEN L S, ANDERSEN M S, STAGSTED L V W, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691. doi: 10.1038/s41576-019-0158-7
|
[8] |
JIANG L, WANG X Y, ZHAN X P, et al. Advance in circular RNA modulation effects of heart failure[J]. Gene X, 2020, 5: 100036. DOI: 10.1016/j.gene.2020.100036.
|
[9] |
ZHANG C T, GAO R, ZHOU R H, et al. The emerging power and promise of non-coding RNAs in chronic pain[J]. Front Mol Neurosci, 2022, 15: 1037929. DOI: 10.3389/fnmol.2022.1037929.
|
[10] |
中华医学会眼科分会眼底病学组. 中国早产儿视网膜病变筛查指南(2014年)[J]. 中华眼科杂志, 2014, 50(12): 933-935. doi: 10.3760/cma.j.issn.0412-4081.2014.12.017
Group of Fundus Diseases, Chinese Ophthalmological Society. Screening guidelines for retinopathy in premature infants in China (2014)[J]. Chinese Journal of Ophthalmology, 2014, 50(12): 933-935. doi: 10.3760/cma.j.issn.0412-4081.2014.12.017
|
[11] |
HUGHES C P, O ' FLYNN N M J, GATHERER M, et al. AAV2/8 anti-angiogenic gene therapy using single-chain antibodies inhibits murine choroidal neovascularization[J]. Mol Ther Methods Clin Dev, 2018, 13: 86-98.
|
[12] |
MAHMOUDI E, CAIRNS M J. CircRNA and Ageing[J]. Subcell Biochem, 2023, 102: 249-270.
|
[13] |
WAWRZYNIAK O, ZAREBSKA ż, KUCZYN ' SKI K, et al. Protein-related circular RNAs in human pathologies[J]. Cells, 2020, 9(8): 1841. DOI: 10.3390/cells9081841.
|
[14] |
ZHOU W Y, CAI Z R, LIU J, et al. Circular RNA: metabolism, functions and interactions with proteins[J]. Mol Cancer, 2020, 19(1): 172. DOI: 10.1186/s12943-020-01286-3.
|
[15] |
郑媛媛, 李伟, 陈余清. 环状RNA与肿瘤相关性研究进展[J]. 中华全科医学, 2019, 17(7): 1181-1185. doi: 10.16766/j.cnki.issn.1674-4152.000896
ZHENG Y Y, LI W, CHEN Y Q. Research progress on the correlation between circRNAs and tumors[J]. Chinese Journal of General Practice, 2019, 17(7): 1181-1185. doi: 10.16766/j.cnki.issn.1674-4152.000896
|
[16] |
盛磊, 林慧, 仇妮, 等. 翠云草总黄酮经环状RNA circ_0006528通路抑制结直肠癌恶性生物学行为研究[J]. 实用临床医药杂志, 2022, 26(4): 106-113.
SHENG L, LIN H, QIU N, et al. Study on total flavonoids from Selaginella uncinata in inhibiting malignant behavior of colorectal cancer cells through circular RNA circ_0006528 pathway[J]. Journal of Clinical Medicine in Practice, 2022, 26(4): 106-113.
|
[17] |
刘德慧, 严玉兰. 环状RNA在肺癌诊断及预后中的研究进展[J]. 实用临床医药杂志, 2021, 25(13): 124-128. doi: 10.7619/jcmp.20211851
LIU D H, YAN Y L. Research progress of circRNAs in diagnosis and prognosis of lung cancer[J]. Journal of Clinical Medicine in Practice, 2021, 25(13): 124-128. doi: 10.7619/jcmp.20211851
|
[18] |
ZHANG Y, YUAN F K, LIU L, et al. The role of the miR-21/SPRY2 axis in modulating proangiogenic factors, epithelial phenotypes, and wound healing in corneal epithelial cells[J]. Invest Ophthalmol Vis Sci, 2019, 60(12): 3854-3862. doi: 10.1167/iovs.19-27013
|
[19] |
GUAN J T, LI X X, PENG D W, et al. MicroRNA-18a-5p administration suppresses retinal neovascularization by targeting FGF1 and HIF1A[J]. Front Pharmacol, 2020, 11: 276. DOI: 10.3389/fphar.2020.00276.
|
[20] |
QIU S K, XIE L, LU C, et al. Gastric cancer-derived exosomal miR-519a-3p promotes liver metastasis by inducing intrahepatic M2-like macrophage-mediated angiogenesis[J]. J Exp Clin Cancer Res, 2022, 41(1): 296. DOI: 10.1186/s13046-022-02499-8.
|
[21] |
SHI S Y, JIN Y, SONG H S, et al. MicroRNA-34a attenuates VEGF-mediated retinal angiogenesis via targeting Notch1[J]. Biochem Cell Biol, 2019, 97(4): 423-430. doi: 10.1139/bcb-2018-0304
|
[22] |
DESJARLAIS M, WIRTH M, RIVERA J C, et al. MicroRNA-96 promotes vascular repair in oxygen-induced retinopathy-a novel uncovered vasoprotective function[J]. Front Pharmacol, 2020, 11: 13. DOI: 10.3389/fphar.2020.00013.
|
[23] |
VISHWAKARMA S, KAUR I. Molecular mediators and regulators of retinal angiogenesis[J]. Semin Ophthalmol, 2023, 38(2): 124-133. doi: 10.1080/08820538.2022.2152706
|
[24] |
程峰, 邱兆磊, 郑传明, 等. JAK/STAT信号通路在大鼠重症急性胰腺炎早期作用机制的研究[J]. 中华全科医学, 2023, 21(1): 41-44, 65. doi: 10.16766/j.cnki.issn.1674-4152.002807
CHENG F, QIU Z L, ZHENG C M, et al. Mechanism of JAK/STAT signaling pathway in the early stage severe acute pancreatitis rats[J]. Chinese Journal of General Practice, 2023, 21(1): 41-44, 65. doi: 10.16766/j.cnki.issn.1674-4152.002807
|
[25] |
DU M K, CUI Z H, CHEN D Q, et al. Hypoxia-inducible factor stabilisation-related lncRNAs in retinopathy of prematurity[J]. J Obstet Gynaecol, 2023, 43(1): 2178289. DOI: 10.1080/01443615.2023.2178289.
|