Citation: | LI Qiongxia, LI Xiumei, YE Yingjian, LI Min, LI Jiazi. Application of "EndoAngel"-assisted colonoscopy in the detection rate of colorectal polyps[J]. Chinese Journal of General Practice, 2025, 23(3): 417-420. doi: 10.16766/j.cnki.issn.1674-4152.003917 |
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
|
[2] |
ALEXANDRA M Z, AHMED A, MICHEL A, et al. Characteristics of early-onset vs late-onset colorectal cancer: a review[J]. JAMA Surg, 2021, 156(9): 865-874. doi: 10.1001/jamasurg.2021.2380
|
[3] |
O'SULLIVAN D E, SUTHERLAND R L, TOWN S, et al. Risk factors for early-onset colorectal cancer: a systematic review and meta-analysis[J]. Clin Gastroenterol Hepatol, 2022, 20(6): 1229-1240. e5. DOI: 10.1016/j.cgh.2021.01.037.
|
[4] |
BRETTHAUER M, LØBERG M, WIESZCZY P, et al. Effect of colonoscopy screening on risks of colorectal cancer and related death[J]. N Engl J Med, 2022, 387(17): 1547-1556. doi: 10.1056/NEJMoa2208375
|
[5] |
XU Q, HE Z. Effect of different working periods on missed diagnosis of colorectal polyps in colonoscopy[J]. BMC Gastroenterol, 2024, 24(1): 286. DOI: 10.1186/s12876-024-03365-x.
|
[6] |
DONG H B, REN Y T, JIANG B. Risk factors associated with missed colorectal lesions in colonoscopy and impact of colonoscopy with anesthesia on miss rate[J]. Scand J Gastroenterol, 2021, 56(4): 484-491. doi: 10.1080/00365521.2021.1879248
|
[7] |
EMILE S H, HORESH N. Underestimating the benefits of screening colonoscopy for colorectal cancer[J]. Int J Colorectal Dis, 2023, 38(1): 1. DOI: 10.1007/s00384-022-04298-1.
|
[8] |
AREIA M, MORI Y, CORREALE L, et al. Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study[J]. Lancet Digit Health, 2022, 4(6): e436-e444. doi: 10.1016/S2589-7500(22)00042-5
|
[9] |
GONG D X, WU L L, ZHANG J, et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study[J]. Lancet Gastroenterol Hepatol, 2020, 5(4): 352-361. doi: 10.1016/S2468-1253(19)30413-3
|
[10] |
BEUKEMA K R, SIMMERING J A, BRUSSE-KEIZER M, et al. Factors influencing endoscopic estimation of colon polyp size in a colon model[J]. Clin Endosc, 2022, 55(4): 540-548. doi: 10.5946/ce.2022.017
|
[11] |
SONG J H, KIM E R. Strategies to improve screening colonoscopy quality for the prevention of colorectal cancer[J]. Korean J Intern Med, 2024, 39(4): 547-554. doi: 10.3904/kjim.2023.334
|
[12] |
SEPUCHA K R, CHANG Y, VALENTINE K D, et al. Shared decision-making in colorectal cancer screening for older adults: a secondary analysis of a cluster randomized clinical trial[J]. JAMA Netw Open, 2024, 7(8): e2429645. DOI: 10.1001/jamanetworkopen.2024.29645.
|
[13] |
PARK D K, KIM E J, IM J P, et al. A prospective multicenter randomized controlled trial on artificial intelligence assisted colonoscopy for enhanced polyp detection[J]. Sci Rep, 2024, 14(1): 25453. DOI: 10.1038/s41598-024-77079-1.
|
[14] |
朱晓芸, 马如超, 司秀晶, 等. 人工智能辅助系统对结肠镜检查质量影响的Meta分析[J]. 中国肛肠病杂志, 2024, 44(8): 11-18.
ZHU X Y, MA R C, SI X J, et al. Meta-analysis of effect of artificial intelligence assisted system on quality of colonoscopy[J]. Chinese Journal of Coloproctology, 2024, 44(8): 11-18.
|
[15] |
陈健, 王珍妮, 夏开建, 等. 基于深度学习的结直肠息肉内镜图像分割和分类方法比较[J]. 上海交通大学学报(医学版), 2024, 44(6): 762-772.
CHEN J, WANG Z N, XIA K J, et al. Comparative study on methods for colon polyp endoscopic image segmentation and classification based on deep learning[J]. Journal of Shanghai Jiao tong University: Medical Science, 2024, 44(6): 762-772.
|
[16] |
CHEN P J, LIN M C, LAI M J, et al. Accurate classification of diminutive colorectal polyps using computer-aided analysis[J]. Gastroenterology, 2018, 154(3): 568-575. doi: 10.1053/j.gastro.2017.10.010
|
[17] |
BYRNE M F, CHAPADOS N, SOUDAN F, et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model[J]. Gut, 2019, 68(1): 94-100. doi: 10.1136/gutjnl-2017-314547
|