Volume 23 Issue 6
Jun.  2025
Turn off MathJax
Article Contents
LIANG Xiaoxia, GAO Min, LIU Huimin, WANG Jinyang, WANG Xiaohuan. Evidence map analysis of influencing factors of type 2 diabetes mellitus in Mendelian randomization study[J]. Chinese Journal of General Practice, 2025, 23(6): 907-911. doi: 10.16766/j.cnki.issn.1674-4152.004029
Citation: LIANG Xiaoxia, GAO Min, LIU Huimin, WANG Jinyang, WANG Xiaohuan. Evidence map analysis of influencing factors of type 2 diabetes mellitus in Mendelian randomization study[J]. Chinese Journal of General Practice, 2025, 23(6): 907-911. doi: 10.16766/j.cnki.issn.1674-4152.004029

Evidence map analysis of influencing factors of type 2 diabetes mellitus in Mendelian randomization study

doi: 10.16766/j.cnki.issn.1674-4152.004029
Funds:

 82360163

 22GSYC-11

  • Received Date: 2024-12-16
    Available Online: 2025-09-04
  •   Objective  To systematically identify the potential causal factors of type 2 diabetes mellitus (T2DM) based on the Mendelian randomization (MR) approach, and to construct an evidence map to comprehensively evaluate the characteristics and quality of existing studies.  Methods  China National Knowledge Infrastructure (CNKI), Wanfang, PubMed, and Web of Science were searched for studies on MR related to T2DM influencing factors from the database establishment to April 2024. Excel was used to extract and organize the data of the included studies, and the quality of the included studies was evaluated according to the three major hypotheses of MR research. The line chart of the number of publications, the three-line table of influencing factors, and the evidence map were comprehensively used to visualize the study characteristics, exposion-outcome association, and methodological application.  Results  A total of 152 articles (including 207 MR studies) were included after the screening, which summarized the causal association between 9 types of exposures and T2DM. The quality evaluation showed that 32.37%(67/207) of the studies basically met the three major assumptions of MR research, 91.78% (190/207) of the research objects were European population, and there were not enough studies on the Asian population. In terms of methodology, 86.95% (180/207) of the studies mainly used inverse variance weighting (IVW), and 75.36% (156/207) of the studies used more than 3 MR analysis methods. The evidence map suggested that body mass index, 25-hydroxyvitamin D, low birth weight, insomnia, and sedentary behavior had strong evidence of causal association with type 2 diabetes.  Conclusion  This study systematically summarizes the causal relationship between T2DM and influencing factors. By April 2024, the MR studies of T2DM will mainly focus on blood indicators, living habits, diseases, and other aspects. It is recommended to strengthen research on other aspects, especially MR studies on the Asian population and Chinese population, and formulate unified quality evaluation criteria for MR studies. To standardize the analytical methods of MR analysis and provide a standard for higher quality research, so as to provide a more accurate scientific basis for the prevention and treatment of T2DM.

     

  • loading
  • [1]
    SAEEDI P, PETERSOHN I, SALPEA P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition[J]. Diabetes Res Clin Pract, 2019, 157: 107843. DOI: 10.1016/j.diabres.2019.107843.
    [2]
    LI Y, TENG D, SHI X, et al. Prevalence of diabetes recorded in mainland china using 2018 diagnostic criteria from the American Diabetes Association: national crosssectional study[J]. BMJ, 2020, 369: m997. DOI: 10.1136/bmj.m997.
    [3]
    中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华糖尿病杂志, 2021, 13(4): 316-317.

    Diabetes Branch of the Chinese Medical Association. Guidelines for the prevention and treatment of type 2 diabetes in China (2020 edition)[J]. Chinese Journal of Diabetes, 2021, 13(4): 316-317.
    [4]
    GONG Q, ZHANG P, WANG J, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing diabetes prevention outcome study[J]. Lancet Diabetes Endocrinol, 2019, 7(6): 452-461. doi: 10.1016/S2213-8587(19)30093-2
    [5]
    LI J, LI H, ULLAH A, et al. Causal effect of selenium levels on osteoporosis: a Mendelian randomization study[J]. Nutrients, 2023, 15(24): 5065. DOI: 10.3390/nu15245065.
    [6]
    FERENCE B A, HOLMES M V, SMITH G D. Using Mendelian randomization to improve the design of randomized trials[J]. Cold Spring Harb Perspect Med, 2021, 11(7): a040980. DOI: 10.1101/cshperspect.a040980.
    [7]
    李艳飞, 李秀霞, 李睿, 等. 证据图谱的制作与报告[J]. 中国循证医学杂志, 2020, 20(9): 1098-1103.

    LI Y F, LI X X, LI R, et al. Production and reporting of evidence maps[J]. Chinese Journal of Evidence-based Medicine, 2020, 20(9): 1098-1103.
    [8]
    王艺涵, 邓宏勇. 证据图谱: 发展, 方法与应用现状[J]. 中国循证心血管医学杂志, 2024, 16(4): 421-424.

    WANG Y H, DENG H Y. Evidence map: development, methods and application status[J]. Chinese Journal of Evidence-based Cardiovascular Medicine, 2021, 16(4): 421-424.
    [9]
    LARSSON S C, BUTTERWORTH A S, BURGESS S. Mendelian randomization for cardiovascular diseases: principles and applications[J]. Eur Heart J, 2023, 44(47): 4913-4924. doi: 10.1093/eurheartj/ehad736
    [10]
    DENG Y, WANG L, HUANG J, et al. Associations between potential causal factors and colorectal cancer risk: a systematic review and meta-analysis of Mendelian randomization studies[J]. J Dig Dis, 2022, 23(8-9): 435-445. doi: 10.1111/1751-2980.13130
    [11]
    邓宏勇. EvdMap@Pymeta: 在线证据图谱绘制工具[EB/OL]. (2024-11-14)[2024-12-22]. https://www.pymeta.com/evdmap/.

    DENG H Y. EvdMap@Pymeta: Online evidence map drawing tool[EB/OL]. (2024-11-14)[2024-12-22]. https://www.pymeta.com/evdmap/.
    [12]
    HU C, ZHOU Y, WU X, et al. Evaluating the distinct pleiotropic effects of omega-3 fatty acids on type 2 diabetes mellitus: a Mendelian randomization study[J]. J Transl Med, 2023, 21(1): 370. doi: 10.1186/s12967-023-04202-7
    [13]
    周梦柔, 兰咏梅, 阿赛古丽. ω-3多不饱和脂肪酸改善2型糖尿病研究进展[J]. 生物过程, 2024, 14(1): 34-42.

    ZHOU M R, LAN Y M, ASA G L. Research progress on the improvement of type 2 diabetes by ω-3 polyunsaturated fatty acids[J]. Bioprocess, 2024, 14(1): 34-42.
    [14]
    WANG T, LI J, HUANG C, et al. COPD and T2DM: a Mendelian randomization study[J]. Front Endocrinol (Lausanne), 2024, 15: 1302641. DOI: 10.3389/fendo.2024.1302641.
    [15]
    谢小月, 张敏. 慢性阻塞性肺疾病与2型糖尿病相关性研究进展[J]. 中国医药科学, 2020, 10(24): 58-60, 71.

    XIE X Y, ZHANG M. Research progress on the correlation between chronic obstructive pulmonary disease and type 2 diabetes[J]. China Medicine and Pharmacy, 2020, 10(24): 58-60, 71.
    [16]
    DING S, XU S, MA Y, et al. Modulatory mechanisms of the NLRP3 inflammasomes in diabetes[J]. Biomolecules, 2019, 9(12): 850. doi: 10.3390/biom9120850
    [17]
    张俏, 周学志, 陈炳合, 等. 2型糖尿病与结直肠癌发生风险的两样本孟德尔随机化研究[J]. 中华全科医学, 2024, 22(9): 1471-1474, 1570. doi: 10.16766/j.cnki.issn.1674-4152.003661

    ZHANG Q, ZHOU X Z, CHEN B H, et al. A two-sample Mendelian randomization study of type 2 diabetes mellitus and colorectal cancer risk[J]. Chinese Journal of General Practice, 2024, 22(9): 1471-1474. doi: 10.16766/j.cnki.issn.1674-4152.003661
    [18]
    XU R, ZHENG T, OUYANG C, et al. Causal associations between site-specific cancer and diabetes risk: a two-sample Mendelian randomization study[J]. Front Endocrinol (Lausanne), 2023, 14: 1110523. DOI: 10.3389/fendo.2023.1110523.
    [19]
    LEE Y, KIM Y A, SEO J H. Causal association of obesity and dyslipidemia with type 2 diabetes: a two-sample Mendelian randomization study[J]. Genes (Basel), 2022, 13(12): 2407. DOI: 10.3390/genes13122407.
    [20]
    DONG Q, SIDRA S, GIEGER C, et al. Metabolic signatures elucidate the effect of body mass index on type 2 diabetes[J]. Metabolites, 2023, 13(2): 227. DOI: 10.3390/metabo13020227.
    [21]
    张波, 杨文英. 中国糖尿病流行病学及预防展望[J]. 中华糖尿病杂志, 2019, 11(1): 7-10.

    ZHANG B, YANG W Y. Epidemiological and preventive prospects of diabetes in China[J]. Chinese Journal of Diabetes, 2019, 11(1): 7-10.
    [22]
    曹慧颖, 冯磊, 唐灵通, 等. 遗传风险评分在预测2型糖尿病中的进展[J]. 中华全科医学, 2023, 21(8): 1383-1387. doi: 10.16766/j.cnki.issn.1674-4152.003128

    CAO H Y, FENG L, TANG L T, et al. Progress of genetic risk score in predicting type 2 diabetes[J]. Chinese Journal of General Practice, 2023, 21(8): 1383-1387. doi: 10.16766/j.cnki.issn.1674-4152.003128
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (32) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return