Volume 23 Issue 6
Jun.  2025
Turn off MathJax
Article Contents
LI Shuang, WANG Shixin, LI Yu, ZHAO Yanxin, LI Xinyu, WANG Yujie, REN Zhen. Research progress on the application of information-based medical care in monitoring patients with digestive tract tumors[J]. Chinese Journal of General Practice, 2025, 23(6): 1013-1017. doi: 10.16766/j.cnki.issn.1674-4152.004055
Citation: LI Shuang, WANG Shixin, LI Yu, ZHAO Yanxin, LI Xinyu, WANG Yujie, REN Zhen. Research progress on the application of information-based medical care in monitoring patients with digestive tract tumors[J]. Chinese Journal of General Practice, 2025, 23(6): 1013-1017. doi: 10.16766/j.cnki.issn.1674-4152.004055

Research progress on the application of information-based medical care in monitoring patients with digestive tract tumors

doi: 10.16766/j.cnki.issn.1674-4152.004055
Funds:

 ZHY2024-308

  • Received Date: 2024-06-21
    Available Online: 2025-09-04
  • For a long time, the standardized diagnosis and treatment of gastrointestinal tumors have faced significant challenges. Limited understanding of tumor pathogenesis hampers the accuracy of early screening, while the lack of effective individualized treatment strategies for patients with advanced stages and the inability to accurately assess prognosis further complicate prevention, diagnosis, and treatment. However, the boom in information-based medical care has brought a breakthrough change to the current medical situation. This information-based medical model effectively utilizes intelligent data models to support clinical diagnosis and treatment for patients with gastrointestinal tumors, significantly enhancing the accuracy of tumor screening. Additionally, the integration of information-based medical care with intelligent auxiliary equipment enables home medication supervision and self-health management, providing a more comprehensive and accurate approach to patient condition monitoring. This paper analyzes the research status of information medicine in the monitoring of patients with digestive tract tumors, both domestically and internationally. It thoroughly discusses the advantages of information medicine model, examines its limitations and challenges, and evaluates the application of information medicine in the future. The aim is to provide a useful reference for improving the treatment and management mode of patients with digestive tract cancer, thereby advancing the overall level of the diagnosis and treatment, and fostering greater hope for better treatment effects to patients.

     

  • loading
  • [1]
    孟令广, 王元, 刘东, 等. 智慧信息化技术在医疗设备管理领域的应用分析[J]. 西安交通大学学报(医学版), 2024, 45(3): 520-524.

    MENG L G, WANG Y, LIU D, et al. Application of intelligent information technology in the field of medical equipment management[J]. Joural of Xi'an Jiaotong University(Medical Sciences), 2024, 45(3): 520-524.
    [2]
    JANETT R S, YERACARIS P P. Electronic medical records in the American health system: challenges and lessons learned[J]. Cien Saude Colet, 2020, 25(4): 1293-1304. doi: 10.1590/1413-81232020254.28922019
    [3]
    AZARI S, MOUSAVI S H, ARKAZI MOGHADDAM N, et al. Cost-effectiveness of remote cardiac monitoring with the cardiomems heart failure system: a systematic review[J]. Med J Islam Repub Iran, 2023, 37: 16. DOI: 10.47176/mjiri.37.16.
    [4]
    VAFFIS S, WHALEY S, AXON D R, et al. Features of cancer mHealth Apps and evidence for patient preferences: scoping literature review[J]. JMIR Cancer, 2023, 9: e37330. DOI: 10.2196/37330.
    [5]
    缪雪怡, 丁玲玉, 陆金玲, 等. 移动医疗在消化道肿瘤病人延续护理中的应用研究进展[J]. 护理研究, 2022, 36(8): 1431-1435.

    MIAO X Y, DING L Y, LU J L, et al. Research progress on the application of mobile health in patients with gastrointestinal tumors[J]. Chinese Nursing Research, 2022, 36(8): 1431-1435.
    [6]
    KLANG E, SOUROSH A, NADKARNI G N, et al. Deep learning and gastric cancer: systematic review of AI-assisted endoscopy[J]. Diagnostics (Basel), 2023, 13(24): 3613. DOI: 10.3390/diagnostics13243613.
    [7]
    MOHAN A, ASGHAR Z, ABID R, et al. Revolutionizing healthcare by use of artificial intelligence in esophageal carcinoma-a narrative review[J]. Ann Med Surg (Lond), 2023, 85(10): 4920-4927. doi: 10.1097/MS9.0000000000001175
    [8]
    GILLIES R J, SCHABATH M B. Radiomics improves cancer screening and early detection[J]. Cancer Epidemiol Biomarkers Prev, 2020, 29(12): 2556-2567. doi: 10.1158/1055-9965.EPI-20-0075
    [9]
    LES'NIEWSKA M, PATRYN R, KOPYSTECKA A, et al. Third eye? The assistance of artificial intelligence (AI) in the endoscopy of gastrointestinal neoplasms[J]. J Clin Med, 2023, 12(21): 6721. DOI: 10.3390/jcm12216721.
    [10]
    PARK S B, CHA J M. Gastrointestinal endoscopy's carbon footprint[J]. Clin Endosc, 2023, 56(3): 263-267. doi: 10.5946/ce.2023.003
    [11]
    MITSALA A, TSALIKIDIS C, PITIAKOUDIS M, et al. Artificial intelligence in colorectal cancer screening, diagnosis and treatment. A new era[J]. Curr Oncol, 2021, 28(3): 1581-1607. doi: 10.3390/curroncol28030149
    [12]
    ZHANG L H, LUO R Q, TANG D H, et al. Human-like artificial intelligent system for predicting invasion depth of esophageal squamous cell carcinoma using magnifying Narrow-Band imaging endoscopy: a retrospective multicenter study[J]. Clin Transl Gastroenterol, 2023, 14(10): e00606. DOI: 10.14309/ctg.0000000000000606.
    [13]
    MARLICZ W, REN X Y, ROBERSTON A, et al. Frontiers of robotic gastroscopy: a comprehensive review of robotic gastroscopes and technologies[J]. Cancers (Basel), 2020, 12(10): 2775. DOI: 10.3390/cancers12102775.
    [14]
    KRÖNER P T, ENGELS M M, GLICKSBERG B S, et al. Artificial intelligence in gastroenterology: a state-of-the-art review[J]. World J Gastroenterol, 2021, 27(40): 6794-6824. doi: 10.3748/wjg.v27.i40.6794
    [15]
    林志, 任禹珂, 赵永田, 等. 应用深度学习卷积神经网络识别小鼠胃鳞状细胞癌[J]. 药物评价研究, 2024, 47(8): 1687-1694.

    LIN Z, REN Y K, ZHAO Y T, et al. Application of deep learning convolutional neural networks to identify gastric squamous cell carcinoma in mice[J]. Drug Evaluation Resarch, 2024, 47(8): 1687-1694.
    [16]
    王晓峰, 周璐, 姚乐宇, 等. 深度卷积神经网络模型辅助下结直肠息肉检测系统对初级医师结直肠小息肉检出率的影响[J]. 上海交通大学学报(医学版), 2022, 42(2): 205-210. doi: 10.3969/j.issn.1674-8115.2022.02.011

    WANG X F, ZHOU L, YAO L Y, et al. Effect of DCNN model-assisted colorectal polyp detection system on thedetection of colorectal polyps by junior physicians[J]. Journal of Shanghai Jiaotong University(Medical Science), 2022, 42(2): 205-210. doi: 10.3969/j.issn.1674-8115.2022.02.011
    [17]
    WU L L, HE X Q, LIU M, et al. Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer: a randomized controlled trial[J]. Endoscopy, 2021, 53(12): 1199-1207. doi: 10.1055/a-1350-5583
    [18]
    郑经一. 基于ResNet和Transformer的早期肺癌诊断算法[J]. 长江信息通信, 2024, 37(4): 32-35.

    ZHENG J Y. Early lung cancer diagnosis algorithm based on ResNet and Transformer[J]. Changjiang Information & Communications, 2024, 37(4): 32-35.
    [19]
    EBIGBO A, MENDEL R, PROBST A, et al. Real-time use of artificial intelligence in the evaluation of cancer in Barrett's oesophagus[J]. Gut, 2020, 69(4): 615-616. doi: 10.1136/gutjnl-2019-319460
    [20]
    ROMPIANESI G, PEGORARO F, CERESA C D, et al. Artificial intelligence in the diagnosis and management of colorectal cancer liver metastases[J]. World J Gastroenterol, 2022, 28(1): 108-122. doi: 10.3748/wjg.v28.i1.108
    [21]
    LI M Y, LI X Y, GUO Y, et al. Development and assessment of an individualized nomogram to predict colorectal cancer liver metastases[J]. Quant Imaging Med Surg, 2020, 10(2): 397-414. doi: 10.21037/qims.2019.12.16
    [22]
    SANGWOO L, KYUNG E C, YEON S K, et al. Liver imaging features by convolutional neural network to predict the metachronous liver metastasis in stage Ⅰ-Ⅲ colorectal cancer patients based on preoperative abdominal CT scan[J]. BMC bioinformatics, 2020, 21(Suppl 13): 382. DOI: 10.1186/s12859-020-03686-0.
    [23]
    GALLOS I K, TRYFONOPOULOS D, SHANI G, et al. Advancing colorectal cancer diagnosis with AI-powered breathomics: navigating challenges and future directions[J]. Diagnostics(Basel), 2023, 13(24): 3673. DOI: 10.3390/diagnostics13243673.
    [24]
    王越, 余松, 庞明辉. 人工智能在消化道肿瘤诊治方面的研究进展[J]. 实用医院临床杂志, 2023, 20(1): 166-170. doi: 10.3969/j.issn.1672-6170.2023.01.045

    WANG Y, YU S, PANG M H. The research progress of artificial intelligence in diagnosis and treatment of gastrointestinal tumors[J]. Practical Journal of Clinical Medicine, 2023, 20(1): 166-170. doi: 10.3969/j.issn.1672-6170.2023.01.045
    [25]
    WANG J, LIANG J, HE M X, et al. Chinese expert consensus on intestinal microecology and management of digestive tract complications related to tumor treatment (version 2022)[J]. J Cancer Res Ther, 2022, 18(7): 1835-1844. doi: 10.4103/jcrt.jcrt_1444_22
    [26]
    GUAN W L, HE Y, XU R H. Gastric cancer treatment: recent progress and future perspectives[J]. J Hematol Oncol, 2023, 16(1): 57. DOI: 10.1186/s13045-023-01451-3.
    [27]
    陈欣怡, 吴婉英, 吴玲玲. 口服化疗药患者报告结局评估工具的研究进展[J]. 护理与康复, 2023, 22(3): 87-91. doi: 10.3969/j.issn.1671-9875.2023.03.021

    CHEN X Y, WU W Y, WU L L. Research progress on patient-reported outcome assessment tools for oral chemotherapeutic agents[J]. Journal of Nursing and Rehabilitation, 2023, 22(3): 87-91. doi: 10.3969/j.issn.1671-9875.2023.03.021
    [28]
    李晓莉, 孟爱凤, 徐桂华, 等. 移动应用对癌症患者居家口服抗癌药物依从性及不良反应影响的系统评价[J]. 护士进修杂志, 2022, 37(3): 236-240.

    LI X L, MENG A F, XU G H, et al. Systematic review of the effects of mobile applications on home-based oralanticancer drug compliance and adverse reactions in cancer patients[J]. Journal of Nurses Training, 2022, 37(3): 236-240.
    [29]
    朱雪琼, 柴艳茹. 移动互联网平台在慢性病病人康复管理中的研究进展[J]. 护理研究, 2023, 37(21): 3863-3868. doi: 10.12102/j.issn.1009-6493.2023.21.012

    ZHU X Q, CHAI Y R. Research progress on mobile internet platform in rehabilitation management of patients with chronic diseases[J]. Chinese Nursing Research, 2023, 37(21): 3863-3868. doi: 10.12102/j.issn.1009-6493.2023.21.012
    [30]
    卢霄蒙, 耿文慧, 尹运腾, 等. 数字健康在肿瘤病人支持性照顾需求中的应用现状[J]. 护理研究, 2023, 37(13): 2404-2409. doi: 10.12102/j.issn.1009-6493.2023.13.022

    LU X M, GENG W H, YIN Y T, et al. Application status quo of digital health in supportive care needs of cancer patients[J]. Chinese Nursing Research, 2023, 37(13): 2404-2409. doi: 10.12102/j.issn.1009-6493.2023.13.022
    [31]
    陆悦, 尚希, 沈海幸, 等. 肿瘤全病程智能管理平台在乳腺癌化疗中的应用[J]. 中国肿瘤临床, 2023, 50(5): 260-264.

    LU Y, SHANG X, SHEN H X, et al. Application of the intelligent management platform for the whole course of cancer in patients with breast cancer[J]. Chinese Journal of Clinical Oncology, 2023, 50(5): 260-264.
    [32]
    郭佳璐. 探讨居家口服化疗药规范化流程在居家服药中管理研究[J]. 中医药管理杂志, 2022, 30(7): 226-227.

    GUO J L. To explore the standardized process of home oral chemotherapy drugs in the management of home medication[J]. Journal of Traditional Chinese Medicine Management, 2022, 30(7): 226-227.
    [33]
    顾连荣, 朱斌, 汪丰. 智慧肿瘤药学门诊的建设与探讨[J]. 中国临床药学杂志, 2020, 29(4): 302-305.

    GU L R, ZHU B, WANG F. Construction and discussion of intelligent oncology pharmacy clinic[J]. Chinese Journal of Clinical Pharmacy, 2020, 29(4): 302-305.
    [34]
    NIU P H, ZHAO L L, WU H L, et al. Artificial intelligence in gastric cancer: application and future perspectives[J]. World J Gastroenterol, 2020, 26(36): 5408-5419. doi: 10.3748/wjg.v26.i36.5408
    [35]
    冯文猛. 我国智慧养老的发展现状、问题与应对策略[J]. 重庆理工大学学报(社会科学), 2024, 38(6): 1-10.

    FENG W M. The development status, problems, and response strategies of smart elderly care in China[J]. Journal of Chongqing University of Technology(Social Science), 2024, 38(6): 1-10.
    [36]
    杨艳伟, 胡文元, 林志, 等. 大数据和人工智能技术用于计算机辅助药物设计的研究进展[J]. 药物评价研究, 2023, 46(6): 1369-1375.

    YANG Y W, HU W Y, LIN Z, et al. Research progress in big data and artificial intelligence techniques for computer-aided drug design[J]. Drug Evaluation Research, 2023, 46(6): 1369-1375.
    [37]
    MILLER M, ROXBURGH C S, MCCANN L, et al. Development of a remote monitoring application to improve care and support patients in the first 30 days following colorectal cancer surgery[J]. Semin Oncol Nurs, 2020, 36(6): 151086. DOI: 10.1016/j.soncn.2020.151086.
    [38]
    WU W T, LI Y J, FENG A Z, et al. Data mining in clinical big data: the frequently used databases, steps, and methodological models[J]. Mil Med Res, 2021, 8(1): 44. DOI: 10.1186/s40779-021-00338-z.
    [39]
    VARUN A, SUYASH A, AARYA B, et al. Exploring the risks, benefits, advances, and challenges in internet integration in medicine with the advent of 5G technology: a comprehensive review[J]. Cureus, 2023, 15(11): e48767. DOI: 10.7759/cureus.48767.
    [40]
    胡佳敏, 邱艳, 任菁菁. AI在基层医疗慢性病管理中的应用研究进展[J]. 中华全科医学, 2024, 22(3): 481-485. doi: 10.16766/j.cnki.issn.1674-4152.003431

    HU J M, QIU Y, REN J J. Advances in the application of AI in chronic disease management in primary care[J]. Chinese Journal of General Practice, 2024, 22(3): 481-485. doi: 10.16766/j.cnki.issn.1674-4152.003431
    [41]
    张俊祥, 李传富, 吕维富. 人工智能在医学教育、科研和临床实践中的应用前景与挑战[J]. 中华全科医学, 2024, 22(7): 1085-1089. doi: 10.16766/j.cnki.issn.1674-4152.003572

    ZHANG J X, LI C F, LYU W F. The application prospects and challenges of artifical intelligence in medical eduaction, medical rescarch, and clinical practice[J]. Chinese Journal of General Practice, 2024, 22(7): 1085-1089. doi: 10.16766/j.cnki.issn.1674-4152.003572
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (15) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return