Volume 23 Issue 7
Jul.  2025
Turn off MathJax
Article Contents
CHEN Jingyi, GAO Fankai, XUE Guofang. Advancements in the study of tight junction protein-5 in epilepsy within the blood-brain barrier[J]. Chinese Journal of General Practice, 2025, 23(7): 1209-1213. doi: 10.16766/j.cnki.issn.1674-4152.004099
Citation: CHEN Jingyi, GAO Fankai, XUE Guofang. Advancements in the study of tight junction protein-5 in epilepsy within the blood-brain barrier[J]. Chinese Journal of General Practice, 2025, 23(7): 1209-1213. doi: 10.16766/j.cnki.issn.1674-4152.004099

Advancements in the study of tight junction protein-5 in epilepsy within the blood-brain barrier

doi: 10.16766/j.cnki.issn.1674-4152.004099
Funds:

 202203021212056

  • Received Date: 2025-01-23
    Available Online: 2025-10-25
  • The blood-brain barrier (BBB) is composed of brain microvascular endothelial cells. It is an important protective barrier that can limit the entry of harmful substances in the blood into the brain and maintain a stable internal environment of brain tissue. Its integrity is crucial to brain function. Tight junction proteins are key components in maintaining the structure and function of the BBB. These proteins are located between brain microvascular endothelial cells, connecting adjacent cells, and maintaining barrier integrity, forming a highly regulated microenvironment. Claudin-5 is one of the most abundant tight junction proteins in the BBB and is widely distributed on the cell membrane of brain microvascular endothelial cells. Studies have shown that Claudin-5 plays a crucial role in regulating the integrity and permeability of the BBB. It ensures the selective permeability of the BBB by controlling the connection gaps between cells, allowing the brain to obtain the required oxygen, glucose, and other substances, while preventing harmful substances, pathogens, and other potentially harmful substances from entering the brain. Once the expression or function of Claudin-5 becomes abnormal, the function of BBB will be affected, thus triggering a series of nervous system diseases, such as neuroinflammation, cerebrovascular disease and neurodegenerative diseases. Epilepsy is a disease caused by abnormal neural discharges. Some studies have shown that Claudin-5 may be involved in the pathogenesis of epilepsy by changing the permeability of the BBB and affecting the ion concentration in the brain tissue. Although the specific mechanism is not fully understood at present, changes in Claudin-5 may be closely related to the occurrence of epilepsy. In summary, Claudin-5 not only plays a vital role in maintaining the integrity of the BBB, but also has potential research value in the pathogenesis of central nervous system diseases, especially epilepsy. This article will review the physiological functions, pathological changes, and role of Claudin-5 in maintaining BBB integrity and epilepsy, providing new ideas for the treatment of epilepsy.

     

  • loading
  • [1]
    REISS Y, BAUER S, DAVID B, et al. The neurovasculature as a target in temporal lobe epilepsy[J]. Brain Pathol, 2023, 33(2): e13147. DOI: 10.1111/bpa.13147.
    [2]
    CHEN X, LUO J, SONG M, et al. Challenges and prospects in geriatric epilepsy treatment: the role of the blood-brain barrier in pharmacotherapy and drug delivery[J]. Front Aging Neurosci, 2024, 16: 1342366. DOI: 10.3389/fnagi.2024.1342366.
    [3]
    WU D, CHEN Q, CHEN X J, et al. The blood-brain barrier: structure, regulation, and drug delivery[J]. Signal Transduct Target Ther, 2023, 8(1): 217. DOI: 10.1038/s41392-023-01481-w.
    [4]
    CARSTENS G, VERBEEK M M, ROHLWINK U K, et al. Metabolite transport across central nervous system barriers[J]. J Cereb Blood Flow Metab, 2024, 44(7): 1063-1077. doi: 10.1177/0271678X241241908
    [5]
    刘玉琴, 陈密, 唐兰燕, 等. 脑乳酸水平与肝性脑病的关系[J]. 临床肝胆病杂志, 2023, 39(7): 1728-1733.

    LIU Y Q, CHEN M, TANG L Y, et al. Research advances in brain lactate level and hepatic encephalopathy[J]. Journal of Clinical Hepatology, 2023, 39(7): 1728-1733.
    [6]
    DITHMER S, BLASIG I E, FRASER P A, et al. The basic requirement of tight junction proteins in blood-brain barrier function and their role in pathologies[J]. Int J Mol Sci, 2024, 25(11): 5601. DOI: 10.3390/ijms25115601.
    [7]
    CUDNA A, BRONISZ E, JOPOWICZ A, et al. Changes in serum blood-brain barrier markers after bilateral tonic-clonic seizures[J]. Seizure, 2023, 106: 129-137. doi: 10.1016/j.seizure.2023.02.012
    [8]
    王红坤, 龙妮娅. 左乙拉西坦联合拉莫三嗪治疗癫痫的疗效及其对血清炎症因子的影响[J]. 贵州医科大学学报, 2023, 48(8): 963-968.

    WANG H K, LONG N Y. Effect of levetiracetam combined with lamotrigine on electroencephalogram and inflammatory factors in epilepsy patients[J]. Journal of Guizhou Medical University, 2023, 48(8): 963-968.
    [9]
    蒋瑞婷, 倪琦超, 王瑜佳, 等. 癫痫患者血清NSE水平及其与脑电图特征和复发风险的相关性[J]. 中华全科医学, 2024, 22(12): 2100-2103. doi: 10.16766/j.cnki.issn.1674-4152.003807

    JIANG R T, NI Q C, WANG Y J, et al. Serum NSE levels in epileptic patients and its correlation with EEG characteristics and recurrence risk[J]. Chinese Journal of General Practice, 2024, 22(12): 2100-2103. doi: 10.16766/j.cnki.issn.1674-4152.003807
    [10]
    BANKS W A, RHEA E M, REED M J, et al. The penetration of therapeutics across the blood-brain barrier: classic case studies and clinical implications[J]. Cell Rep Med, 2024, 5(11): 101760. DOI: 10.1016/j.xcrm.2024.101760.
    [11]
    王钰宏, 罗凯旋, 李俊瑞, 等. 聚焦超声联合微泡开放血脑屏障对小鼠紧密连接蛋白的影响[J]. 中国康复医学杂志, 2023, 38(1): 8-15.

    WANG Y H, LUO K X, LI J R, et al. Effects of focused ultrasound combined with microbubbles to open the blood-brain barrier on tight junction proteins[J]. Chinese Journal of Rehabilitation Medicine, 2023, 38(1): 8-15.
    [12]
    CHEN P, WANG S D, ZHANG H M, et al. Recent advances in nanotherapy-based treatment of epilepsy[J]. Colloids Surf B Biointerfaces, 2025, 249: 114499. DOI: 10.1016/j.colsurfb.2025.114499.
    [13]
    CHEN F, DONG X, WANG Z H, et al. Regulation of specific abnormal calcium signals in the hippocampal CA1 and primary cortex M1 alleviates the progression of temporal lobe epilepsy[J]. Neural Regen Res, 2024, 19(2): 425-433. doi: 10.4103/1673-5374.379048
    [14]
    SATO R, OHMORI K, UMETSU M, et al. An Atlas of the quantitative protein expression of anti-epileptic-drug transporters, metabolizing enzymes and tight junctions at the blood-brain barrier in epileptic patients[J]. Pharmaceutics, 2021, 13(12): 2122. DOI: 10.3390/pharmaceutics13122122.
    [15]
    GUAN Z Y, LIU Q L, WANG Y H, et al. Relationship between tight junctions of the BBB and astrocyte connective function in epilepsy: albumin and astrocyte activation[J]. Medicine Plus, 2024, 1(3): 100047. DOI: 10.1016/j.medp.2024.100047.
    [16]
    GREENE C, HANLEY N, RESCHKE C R, et al. Microvascular stabilization via blood-brain barrier regulation prevents seizure activity[J]. Nat Commun, 2022, 13: 2003. DOI: 10.1038/s41467-022-29657-y.
    [17]
    PFAU S J, LANGEN U H, FISHER T M, et al. Characteristics of blood-brain barrier heterogeneity between brain regions revealed by profiling vascular and perivascular cells[J]. Nat Neurosci, 2024, 27(10): 1892-1903. doi: 10.1038/s41593-024-01743-y
    [18]
    TREVISANI M, BERSELLI A, ALBERINI G, et al. A claudin5-binding peptide enhances the permeability of the blood-brain barrier in vitro[J]. Sci Adv, 2025, 11(2): eadq2616. DOI: 10.1126/sciadv.adq2616.
    [19]
    GONSCHIOR H, SCHMIED C, VAN DER VEEN R E, et al. Nanoscale segregation of channel and barrier claudins enables paracellular ion flux[J]. Nat Commun, 2022, 13(1): 4985. DOI: 10.1038/s41467-022-32533-4.
    [20]
    GONZALES-ALOY E, AHMED-COX A, TSOLI M, et al. From cells to organoids: the evolution of blood-brain barrier technology for modelling drug delivery in brain cancer[J]. Adv Drug Deliv Rev, 2023, 196: 114777. DOI: 10.1016/j.addr.2023.114777.
    [21]
    杨茗惠, 刘辉, 佟湃舸, 等. 星形胶质细胞在血脑屏障发育与稳态维持中的作用机制[J]. 生命科学, 2023, 35(12): 1669-1677.

    YANG M H, LIU H, TONG P G, et al. The role of astrocyte in development and maintenance of the blood brain barrier[J]. Chinese Bulletin of Life Sciences, 2023, 35(12): 1669-1677.
    [22]
    KIM H, LENG K, PARK J, et al. Reactive astrocytes transduce inflammation in a blood-brain barrier model through a TNF-STAT3 signaling axis and secretion of alpha 1-antichymotrypsin[J]. Nat Commun, 2022, 13(1): 6581. DOI: 10.1038/s41467-022-34412-4.
    [23]
    GARCIA F J, SUN N, LEE H, et al. Single-cell dissection of the human brain vasculature[J]. Nature, 2022, 603(7903): 893-899. doi: 10.1038/s41586-022-04521-7
    [24]
    HARRY G J. Developmental associations between neurovascularization and microglia colonization[J]. Int J Mol Sci, 2024, 25(2): 1281. DOI: 10.3390/ijms25021281.
    [25]
    CHEN X Y, YAO N N, MAO Y G, et al. Activation of the Wnt/β-catenin/CYP1B1 pathway alleviates oxidative stress and protects the blood-brain barrier under cerebral ischemia/reperfusion conditions[J]. Neural Regen Res, 2024, 19(7): 1541. DOI: 10.4103/1673-5374.386398.
    [26]
    NI G X, KOU L L, DUAN C Q, et al. MicroRNA-199a-5p attenuates blood-brain barrier disruption following ischemic stroke by regulating PI3K/Akt signaling pathway[J]. PLoS One, 2024, 19(9): e0306793. DOI: 10.1371/journal.pone.0306793.
    [27]
    AGUILAR-CASTILLO M J, CABEZUDO-GARCÍA P, GARCÍA-MARTÍN G, et al. A systematic review of the predictive and diagnostic uses of neuroinflammation biomarkers for epileptogenesis[J]. Int J Mol Sci, 2024, 25(12): 6488. DOI: 10.3390/ijms25126488.
    [28]
    CELENTANO C, CAROTENUTO L, MICELI F, et al. Kv7 channel activation reduces brain endothelial cell permeability and prevents kainic acid-induced blood-brain barrier damage[J]. Am J Physiol Cell Physiol, 2024, 326(3): C893-C904. doi: 10.1152/ajpcell.00709.2023
    [29]
    PRABHAKAR N K, KHAN H, GREWAL A K, et al. Intervention of neuroinflammation in the traumatic brain injury trajectory: in vivo and clinical approaches[J]. Int Immunopharmacol, 2022, 108: 108902. DOI: 10.1016/j.intimp.2022.108902.
    [30]
    RONALDSON P T, WILLIAMS E I, BETTERTON R D, et al. CNS drug delivery in stroke: improving therapeutic translation from the bench to the bedside[J]. Stroke, 2024, 55(1): 190-202. doi: 10.1161/STROKEAHA.123.043764
    [31]
    REISS Y, BAUER S, DAVID B, et al. The neurovasculature as a target in temporal lobe epilepsy[J]. Brain Pathol, 2023, 33(2): e13147. DOI: 10.1111/bpa.13147.
    [32]
    HASHIMOTO Y, GREENE C, MUNNICH A, et al. The CLDN5 gene at the blood-brain barrier in health and disease[J]. Fluids Barriers CNS, 2023, 20(1): 22. DOI: 10.1186/s12987-023-00424-5.
    [33]
    DITHMER S, BLASIG I E, FRASER P A, et al. The basic requirement of tight junction proteins in blood-brain barrier function and their role in pathologies[J]. Int J Mol Sci, 2024, 25(11): 5601. DOI: 10.1186/s12987-023-00424-5.
    [34]
    WAKAYAMA E, KUZU T, TACHIBANA K, et al. Modifying the blood-brain barrier by targeting claudin-5: safety and risks[J]. Ann N Y Acad Sci, 2022, 1514(1): 62-69. doi: 10.1111/nyas.14787
    [35]
    MEIJER W C, GORTER J A. Role of blood-brain barrier dysfunction in the development of poststroke epilepsy[J]. Epilepsia, 2024, 65(9): 2519-2536. doi: 10.1111/epi.18072
    [36]
    方彬宇, 朱婷, 张淑霞, 等. 三七皂苷抗缺血性脑卒中的分子机制研究进展[J]. 中华全科医学, 2022, 20(6): 1027-1030, 1048. doi: 10.16766/j.cnki.issn.1674-4152.002516

    FANG B Y, ZHU T, ZHANG S X, et al. Research progress on the molecular mechanism of panax notoginseng saponins against ischemic stroke[J]. Chinese Journal of General Practice, 2022, 20(6): 1027-1030, 1048. doi: 10.16766/j.cnki.issn.1674-4152.002516
    [37]
    KUMAR NELSON V, JHA N K, NULI M V, et al. Unveiling the impact of aging on BBB and Alzheimer's disease: factors and therapeutic implications[J]. Ageing Res Rev, 2024, 98: 102224. DOI: 10.1016/j.arr.2024.102224.
    [38]
    CHEN J X Y, VIPIN A, SANDHU G K, et al. Blood-brain barrier integrity disruption is associated with both chronic vascular risk factors and white matter hyperintensities[J]. J Prev Alzheimers Dis, 2025, 12(2): 100029. DOI: 10.1016/j.tjpad.2024.100029.
    [39]
    LAU K, KOTZUR R, RICHTER F. Blood-brain barrier alterations and their impact on Parkinson's disease pathogenesis and therapy[J]. Transl Neurodegener, 2024, 13(1): 37. DOI: 10.1186/s40035-024-00430-z.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (15) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return