Effects of the up-regulation of KLF13 on invasion, migration and p-AKT expression of osteosarcoma cells
-
摘要:
目的 研究Kruppel样因子13(KLF13)对骨肉瘤细胞(MG-63)侵袭、迁移的影响及该过程中p-AKT蛋白表达变化。 方法 将MG-63细胞按照随机数字表法分为对照组、NC组和LV-KLF13-OE组;显微镜观察KLF13慢病毒颗粒转染情况;实时荧光定量PCR(qRT-PCR)检测KLF13 mRNA表达情况;蛋白免疫印迹法检测KLF13、丝氨酸/苏氨酸蛋白激酶B(AKT)及磷酸化水平、E-钙黏蛋白(E-cadherin)和膜棕榈糖基化蛋白2(MPP-2)的蛋白表达情况;细胞计数试剂盒8(CCK-8)法检测细胞增殖情况;划痕实验检测迁移能力;小室法(Transwell)检测侵袭能力。 结果 MG-63细胞转染效率>75%;与对照组和NC组相比,LV-KLF13-OE组细胞KLF13 mRNA和蛋白、E-cadherin蛋白表达升高(F=1 544.143、588.000、235.391,均P<0.001),MPP-2蛋白表达水平降低(F=260.053,P<0.001);LV-KLF13-OE组细胞划痕愈合率[(20.07±8.18)%]、侵袭数量[(89.29±15.04)个]、p-AKT蛋白表达(0.21±0.02)水平低于对照组[(71.61±6.02)%、(221.33±20.09)个、1.12±0.12]和NC组[(74.93±7.21)%、(212.69±25.47)个、1.09±0.08,F=109.781、76.815、226.896, 均P<0.001]。 结论 KLF13过表达可能通过下调p-AKT水平,抑制人骨肉瘤细胞迁移和侵袭。 -
关键词:
- Kruppel样因子13 /
- 骨肉瘤细胞 /
- 增殖 /
- 迁移 /
- 侵袭 /
- 丝氨酸/苏氨酸蛋白激酶B
Abstract:Objective To study the effects of Kruppel-like factor 13 (KLF13) on the invasion and migration of osteosarcoma cells (MG-63) and changes in p-AKT protein expression during the process. Methods MG-63 cells were divided into control group, NC group and LV-KLF13-OE group according to random number table method. The transfection of KLF13 recombinant lentivirus particles was observed under a microscope. The expression levels of KLF13 mRNA were detected by real-time fluorescent quantitative PCR. In addition, the protein expression levels of KLF13, serine/threonine protein kinase B (AKT) and its phosphorylation, E-cadherin and membrane palmitoylated protein 2 (MPP-2) were detected by western blot. Proliferation was detected by the Cell Counting Kit-8 (CCK-8), the migration ability was detected by a scratch test, and invasiveness was detected by the transwell method. Results The transfection efficiency of MG-63 cells was over 75%. Compared with those in the control group and NC group, the expression levels of KLF13 mRNA and protein and E-cadherin protein in the LV-KLF13-OE group were significantly higher (F=1 544.143, 588.000, 235.391, all P < 0.001), and the expression levels of MPP-2 protein were significantly lower (F=260.053, P < 0.001). The scratch healing rate [(20.07±8.18) %], number of invasions (89.29±15.04) and p-AKT protein expression (0.21±0.02) levels in the LV-KLF13-OE group were significantly lower than those in the control group [(71.61±6.02)%, 221.33±20.09 and 1.12±0.12] and NC group [(74.93±7.21)%, 212.69±25.47 and 1.09±0.08; F=109.781, 76.815, 226.896, all P < 0.001]. Conclusion KLF13 overexpression may inhibit the migration and invasion of human osteosarcoma cells by down-regulating p-AKT expression. -
Key words:
- Kruppel-like factor 13 /
- Osteosarcoma cells /
- Proliferation /
- Migration /
- Invasion /
- Serine/threonine protein kinase B
-
表 1 KLF13和β-actin引物序列
基因 上游引物 下游引物 KLF13 5′-CAGAGGAAGCACAAGTGCCACT-3′ 5′-CGCGAACTTCTTGTTGCAGTCC-3′ β-actin 5′-AAATCGTGCGTGACATTAA-3′ 5′-CTCGTCATACTCCTGCTT-3′ 表 2 转染后MG-63细胞KLF13 mRNA及蛋白表达变化情况(x±s)
组别 n KLF13 mRNA KLF13蛋白 对照组 6 1.12±0.01 0.21±0.01 NC组 6 1.10±0.03 0.19±0.02 LV-KLF13-OE组 6 1.71±0.02ab 0.57±0.03ab F值 1 544.143 588.000 P值 <0.001 <0.001 注:与对照组比较,aP<0.05;与NC组比较,bP<0.05。 表 3 转染后MG-63细胞存活率变化情况(x±s,%)
组别 n MG-63细胞存活率 12 h 24 h 48 h 对照组 6 101.45±1.55 105.71±1.61 103.19±1.93 NC组 6 102.67±2.04 101.89±1.97 104.74±1.49 LV-KLF13-OE组 6 86.49±1.39ab 70.15±2.11abc 52.93±1.58abcd F值 171.988 627.875 1852.565 P值 <0.001 <0.001 <0.001 注:与对照组比较,aP<0.05;与NC组比较,bP<0.05;与LV-KLF13-OE组12 h比较,cP<0.05;与LV-KLF13-OE组24 h比较,dP<0.05。 表 4 转染后MG-63细胞p-AKT、AKT、E-cadherin、MPP-2蛋白表达情况(x±s)
组别 n p-AKT蛋白 AKT蛋白 E-cadherin蛋白 MPP-2蛋白 对照组 6 1.12±0.12 1.09±0.07 0.36±0.02 0.83±0.03 NC组 6 1.09±0.08 1.01±0.09 0.38±0.04 0.80±0.05 LV-KLF13-OE组 6 0.21±0.02ab 0.97±0.10 0.89±0.02ab 0.41±0.02ab F值 226.896 2.922 235.391 260.053 P值 <0.001 0.085 <0.001 <0.001 注:与对照组比较,aP<0.05;与NC组比较,bP<0.05。 -
[1] QIN F, TANG H, ZHANG Y, et al. Bone marrow-derived mesenchymal stem cell-derived exosomal microRNA-208a promotes osteosarcoma cell proliferation, migration, and invasion[J]. J Cell Physiol, 2020, 235(5): 4734-4745. doi: 10.1002/jcp.29351 [2] MORSY A M, AHMED B M, REZK K M, et al. Age and tumor location predict survival in nonmetastatic osteosarcoma in Upper Egypt[J]. J Pediatr Hematol Oncol, 2020, 42(2): e66-e78. doi: 10.1097/MPH.0000000000001506 [3] DEAN D C, SHEN S, HORNICEK F J, et al. From genomics to metabolomics: Emerging metastatic biomarkers in osteosarcoma[J]. Cancer Metastasis Rev, 2018, 37(4): 719-731. doi: 10.1007/s10555-018-9763-8 [4] 张保龙, 马利阁, 尹万乐, 等. 干预Bcl-2基因表达对骨肉瘤细胞侵袭、迁移能力的影响[J]. 中国老年学杂志, 2018, 38(12): 2975-2977. doi: 10.3969/j.issn.1005-9202.2018.12.063 [5] 梁铃, 黄玥, 莫之婧, 等. KLF基因家族在乳腺癌中的表达及临床意义[J]. 基因组学与应用生物学, 2018, 37(5): 2257-2265. https://www.cnki.com.cn/Article/CJFDTOTAL-GXNB201805068.htm [6] ZHANG W, HONG S, MANIAR K P, et al. KLF13 regulates the differentiation-dependent human papillomavirus life cycle in keratinocytes through STAT5 and IL-8[J]. Oncogene, 2016, 35(42): 5565-5575. doi: 10.1038/onc.2016.97 [7] 钱万锋, 王秀峰, 陈学鹏. miR-19b在骨肉瘤组织中的表达及其通过调控KLF13影响骨肉瘤Saos-2细胞侵袭和迁移的研究[J]. 中国临床药理学与治疗学, 2019, 24(11): 1242-1248. doi: 10.12092/j.issn.1009-2501.2019.11.005 [8] 阎亮, 孙晓泽, 王上增, 等. GAS5对骨肉瘤U2OS细胞增殖、迁移和侵袭的影响[J]. 中国脊柱脊髓杂志, 2019, 29(8): 717-724. doi: 10.3969/j.issn.1004-406X.2019.08.07 [9] 曹飞, 康小红, 崔艳慧, 等. 赖氨酸羟化酶2在骨肉瘤组织中的表达及其对骨肉瘤细胞迁移和侵袭的影响[J]. 中华肿瘤杂志, 2019, 41(6): 435-440. [10] 何昀, 方姝煜, 毕杨, 等. Twist调控骨肉瘤细胞的增殖、迁移和侵袭[J]. 南方医科大学学报, 2018, 38(5): 554-560. doi: 10.3969/j.issn.1673-4254.2018.05.008 [11] QI Y, LV J, LIU S, et al. TSPAN9 and EMILIN1 synergistically inhibit the migration and invasion of gastric cancer cells by increasing TSPAN9 expression[J]. BMC Cancer, 2019, 19(1): 630-641. doi: 10.1186/s12885-019-5810-2 [12] 崔立山, 林婷, 徐岚溪, 等. 下调基因PTTG1对人胶质瘤细胞SHG44增殖、凋亡、迁移和侵袭能力的影响[J]. 中国癌症杂志, 2019, 29(5): 338-344. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGAZ201905004.htm [13] 吕峰, 李翠, 于洋, 等. KLF3通过STAT3调控乳腺癌细胞的运动、迁移及侵袭[J]. 中华医学杂志, 2019, 99(38): 3014-3018. doi: 10.3760/cma.j.issn.0376-2491.2019.38.010 [14] 李天梁, 徐亮, 李蜀华, 等. Kruppel样因子8通过转化生长因子-β1介导的上皮间质转化促进胃癌细胞的侵袭转移[J]. 中国老年学杂志, 2018, 38(9): 2214-2218. doi: 10.3969/j.issn.1005-9202.2018.09.065 [15] HU Y, ZHANG M, TIAN N, et al. The antibiotic clofoctol suppresses glioma stem cell proliferation by activating KLF13[J]. J Clin Invest, 2019, 129(8): 3072-3085. doi: 10.1172/JCI124979 [16] CHEN J, HUANG X, WANG W, et al. LncRNA CDKN2BAS predicts poor prognosis in patients with hepatocellular carcinoma and promotes metastasis via the miR-153-5p/ARHGAP18 signaling axis[J]. Aging(Albany NY), 2018, 10(11): 3371-3381. [17] 王庆生, 孙晓海, 叶湛, 等. 微小RNA-19b调节锌指蛋白13对骨肉瘤细胞增殖凋亡的影响[J]. 中华实验外科杂志, 2019, 36(12): 2254-2256. doi: 10.3760/cma.j.issn.1001-9030.2019.12.039 [18] HOU Y, LI H, HUO W. THBS4 silencing regulates the cancer stem cell-like properties in prostate cancer via blocking the PI3K/Akt pathway[J]. Prostate, 2020, 80(10): 753-763. doi: 10.1002/pros.23989 [19] 于耀洋, 赵佳, 李向楠. 南蛇藤提取物联合miR-302通过PI3K/Akt信号通路调控食管癌细胞增殖、侵袭和迁移的研究[J]. 中草药, 2019, 50(10): 2371-2376. doi: 10.7501/j.issn.0253-2670.2019.10.017 [20] ZHENG Z, ZHAO F, ZHU D, et al. Long Non-Coding RNA LUCAT1 promotes proliferation and invasion in clear cell renal cell carcinoma through AKT/GSK-3β signaling pathway[J]. Cell Physiol Biochem, 2018, 48(3): 891-904. doi: 10.1159/000491957 [21] XU Y, ZHOU W, JI Y, et al. Elongator promotes the migration and invasion of hepatocellular carcinoma cell by the phosphorylation of AKT[J]. Int J Biol Sci, 2018, 14(5): 518-530. doi: 10.7150/ijbs.23511 [22] 马慧利, 任中海, 李明林, 等. 藤梨根提取物通过微小RNA-34-5p调控肝癌细胞生物学行为[J]. 中华实验外科杂志, 2019, 36(10): 1762-1765. doi: 10.3760/cma.j.issn.1001-9030.2019.10.010 [23] 王刚, 杨涛, 彭克楠, 等. Twist对膀胱癌细胞迁移、侵袭及MMP-2、MMP-9表达的影响[J]. 中国老年学杂志, 2018, 38(10): 2439-2442. doi: 10.3969/j.issn.1005-9202.2018.10.055 [24] 郝俊龙, 王亚鹏, 杨凯, 等. 葡萄糖转运蛋白-1通过Wnt/β-catenin通路促进骨肉瘤MG63细胞迁移[J]. 中国肿瘤生物治疗杂志, 2018, 25(5): 469-474. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLSW201805005.htm [25] 喻婷婷, 徐丽, 董超群, 等. 葫芦素B抑制骨肉瘤143B细胞的增殖和侵袭并促进其凋亡[J]. 肿瘤, 2019, 39(4): 249-258. doi: 10.3969/j.issn.2095-252X.2019.04.002 [26] WANG Q, PENG R, WANG B, et al. Transcription factor KLF13 inhibits AKT activation and suppresses the growth of prostate carcinoma cells[J]. Cancer Biomark, 2018, 22(3): 533-541. doi: 10.3233/CBM-181196