留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于菌-肠-脑轴的肠肽与焦虑抑郁关系的研究进展

刘莉

刘莉. 基于菌-肠-脑轴的肠肽与焦虑抑郁关系的研究进展[J]. 中华全科医学, 2022, 20(8): 1388-1391. doi: 10.16766/j.cnki.issn.1674-4152.002604
引用本文: 刘莉. 基于菌-肠-脑轴的肠肽与焦虑抑郁关系的研究进展[J]. 中华全科医学, 2022, 20(8): 1388-1391. doi: 10.16766/j.cnki.issn.1674-4152.002604
LIU Li. Research progress of intestinal peptides and the occurrence of anxiety and depression on the basis of the microbiota-gut-brain axis[J]. Chinese Journal of General Practice, 2022, 20(8): 1388-1391. doi: 10.16766/j.cnki.issn.1674-4152.002604
Citation: LIU Li. Research progress of intestinal peptides and the occurrence of anxiety and depression on the basis of the microbiota-gut-brain axis[J]. Chinese Journal of General Practice, 2022, 20(8): 1388-1391. doi: 10.16766/j.cnki.issn.1674-4152.002604

基于菌-肠-脑轴的肠肽与焦虑抑郁关系的研究进展

doi: 10.16766/j.cnki.issn.1674-4152.002604
详细信息
    作者简介:

    刘莉:E-mail:d1152932074@163

  • 中图分类号: R749.4 R574

Research progress of intestinal peptides and the occurrence of anxiety and depression on the basis of the microbiota-gut-brain axis

  • 摘要: 焦虑抑郁是由于不良情绪引起机体出现应激反应而导致的躯体性障碍,是生物、心理和社会因素共同作用导致的心理、生理症状并存的疾病,是当代社会最常见的心理疾病。该病不仅降低个人的生活质量, 还给家庭和社会带来巨大的经济负担。近年来随着高通量测序、序列识别技术及肠道宏基因组学的成熟,肠道微生物的作用被广泛认识和重视。肠道与中枢神经系统间存在着复杂的双向交流,由内分泌、免疫、肠道神经系统等多个系统精心协调完成。因此,肠道又被称为是人体的“第二大脑”。既往研究表明,肠道微生物可能作为微炎性反应状态的启动者,其介导的肠道稳态失衡,进而导致“菌-肠-脑”功能紊乱,在焦虑抑郁的发病过程中起着重要的作用,但具体致病机制目前尚不明确。作为人体最大的内分泌器官,肠道可以分泌数十种不同的信号分子,多以肽类为主。而分泌到体循环中的肠肽可与免疫细胞和迷走神经末梢上的同源受体结合,从而实现间接的肠脑沟通。因此,本文就肠肽作为菌-肠-脑轴的信号分子对焦虑抑郁的影响进行综述,以期为焦虑抑郁的临床诊治提供一定的参考。通过调节肠道微生物来改变抑郁焦虑等心理疾病已成为神经科学和心理学的热点, 维护良好的肠道菌群可能是未来焦虑抑郁预防和治疗的重要方向。

     

  • [1] MALHI G S, MANN J J. Depression[J]. Lancet, 2018, 392(10161): 2299-2312. doi: 10.1016/S0140-6736(18)31948-2
    [2] 梁姗, 吴晓丽, 胡旭, 等. 抑郁症研究的发展和趋势: 从菌-肠-脑轴看抑郁症[J]. 科学通报(英文版), 2018, 63(20): 2010-2025. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201820005.htm

    LINANG S, WU X L, HU X, et al. The development and tendency of depression researches: Viewed from the microbiota-gut-brain axis[J]. Chinese Science Bulletin, 2018, 63(20): 2010-2025. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201820005.htm
    [3] 李鸿, 吕钦谕, 易正辉. 抑郁症合并焦虑症患者自杀态度调查及其与病情、应对方式的关系探讨[J]. 中华全科医学, 2019, 17(12): 2069-2071, 2134. doi: 10.16766/j.cnki.issn.1674-4152.001129

    LI H, LYU Q Y, YI Z H. Investigation of suicide attitudes and its relationship with illness conditions and coping styles in patients with depression combined with anxiety disorder[J]. Chinese Journal of General Practice, 2019, 17(12): 2069-2071, 2134. doi: 10.16766/j.cnki.issn.1674-4152.001129
    [4] TOMLINSON A, EFTHIMIOU O, BOADEN K, et al. Side effect profile and comparative tolerability of 21 antidepressants in the acute treatment of major depression in adults: Protocol for a network meta-analysis[J]. Evid Based Ment Health, 2019, 22(2): 61-66. doi: 10.1136/ebmental-2019-300087
    [5] 申变红, 陶云海, 朱春燕. 肠道菌群比例在精神分裂症发病中的作用及其与炎症因子的关系[J]. 中华全科医学, 2018, 16(2): 276-278. doi: 10.16766/j.cnki.issn.1674-4152.000077

    SHEN B H, TAO Y H, ZHU C Y. The role of intestinal flora in the pathogenesis of schizophrenia and its relationship with inflammatory factors[J]. Chinese Journal of General Practice, 2018, 16(2): 276-278. doi: 10.16766/j.cnki.issn.1674-4152.000077
    [6] CRYAN J F, O' RIORDAN K J, COWAN C S M, et al. The microbiota-gut-brain axis[J]. Physiol Rev, 2019, 99(4): 1877-2013. doi: 10.1152/physrev.00018.2018
    [7] STOWER H. Gut-brain communication[J]. Nat Med, 2019, 25(12): 1799.
    [8] LIMA-OJEDA J M, RUPPRECHT R, BAGHAI T C. Gut microbiota and depression: Hypothalamic-pituitary-adrenal axis and microbiota-gut-brain axis[J]. Nervenarzt, 2020, 91(12): 1108-1114. doi: 10.1007/s00115-020-01029-1
    [9] CARLESSI A S, BORBA L A, ZUGNO A I, et al. Gut microbiota-brain axis in depression: The role of neuroinflammation[J]. Eur J Neurosci, 2021, 53(1): 222-235. doi: 10.1111/ejn.14631
    [10] GAO X, CAO Q, CHENG Y, et al. Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response[J]. Proc Natl Acad Sci U S A, 2018, 115(13): E2960-E2969.
    [11] LABUS J S, HOLLISTER E B, JACOBS J, et al. Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome[J]. Microbiome, 2017, 5(1): 49. doi: 10.1186/s40168-017-0260-z
    [12] YU M, JIA H M, ZHOU C, et al. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics[J]. J Pharm Biomed Anal, 2017, 138(10): 231-239.
    [13] HATA T, ASANO Y, YOSHIHARA K, et al. Regulation of gut luminal serotonin by commensal microbiota in mice[J]. PLoS One, 2017, 12(7): e0180745. DOI: 10.1371/journal.pone.0180745.
    [14] LUKIĈI, GETSELTER D, ZIV O, et al. Antidepressants affect gut microbiota and ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior[J]. Transl Psychiatry, 2019, 9(1): 133. doi: 10.1038/s41398-019-0466-x
    [15] ROSENBLAT J D, MCINTYRE R S. Efficacy and tolerability of minocycline for depression: A systematic review and meta-analysis of clinical trials[J]. J Affect Disord, 2018, 227(7): 219-225.
    [16] GUIDA F, TURCO F, IANNOTTA M, et al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice[J]. Brain Behav Immun, 2018, 67(6): 230-245.
    [17] BELLONO N W, BAYRER J R, LEITCH D B, et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways[J]. Cell, 2017, 170(1): 185-198. doi: 10.1016/j.cell.2017.05.034
    [18] COHEN L J, ESTERHAZY D, KIM S H, et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules[J]. Nature, 2017, 549(7670): 48-53. doi: 10.1038/nature23874
    [19] IZZI-ENGBEAYA C, JONES S, CRUSTNA Y, et al. Effects of peptide YY on the hypothalamic-pituitary-gonadal axis in healthy men[J]. J Clin Endocrinol Metab, 2020, 105(3): 833-838. doi: 10.1210/clinem/dgz103
    [20] WU Y, HE H X, CHENG Z B, et al. The role of neuropeptide Y and peptide YY in the development of obesity via gut-brain axis[J]. Curr Protein Pept Sci, 2019, 20(7): 750-758. doi: 10.2174/1389203720666190125105401
    [21] LIU R, ZHANG C H, SHI Y, et al. Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome[J]. Front Microbiol, 2017, 8(28): 324.
    [22] CHRISTIANSEN C B, TRAMMELL S A J, WEWER A N J, et al. Bile acids drive colonic secretion of glucagon-like-peptide 1 and peptide-YY in rodents[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(5): G574-G584. doi: 10.1152/ajpgi.00010.2019
    [23] HASSAN A M, MANCANO G, KASHOFER K, et al. Anhedonia induced by high-fat diet in mice depends on gut microbiota and leptin[J]. Nutr Neurosci, 2020, 15(4): 1-14.
    [24] BRENNER L, ZERLIN L, TAN L L. Functional disruption of cortical cingulate activity attenuates visceral hypersensitivity and anxiety induced by acute experimental colitis[J]. Sci Rep, 2021, 11(1): 2103. doi: 10.1038/s41598-021-81256-x
    [25] DETKA J, ŜLUSARCZYK J, KUREK A, et al. Hypothalamic insulin and glucagon-like peptide-1 levels in an animal model of depression and their effect on corticotropin-releasing hormone promoter gene activity in a hypothalamic cell line[J]. Pharmacol Rep, 2019, 71(2): 338-346. doi: 10.1016/j.pharep.2018.11.001
    [26] ANDERSEN A, LUND A, KNOP F K, et al. Glucagon-like peptide 1 in health and disease[J]. Nat Rev Endocrinol, 2018, 14(7): 390-403. doi: 10.1038/s41574-018-0016-2
    [27] YAMANE S, INAGAKI N. Regulation of glucagon-like peptide-1 sensitivity by gut microbiota dysbiosis[J]. J Diabetes Investig, 2018, 9(2): 262-264. doi: 10.1111/jdi.12762
    [28] HUI S C, HUANG L, WANG X L, et al. Capsaicin improves glucose homeostasis by enhancing glucagon-like peptide-1 secretion through the regulation of bile acid metabolism via the remodeling of the gut microbiota in male mice[J]. FASEB J, 2020, 34(6): 8558-8573. doi: 10.1096/fj.201902618RR
    [29] VENTORP F, BAY-RICHTER C, NAGENDRA A S, et al. Exendin-4 treatment improves LPS-induced depressive-Like behavior without affecting pro-inflammatory cytokines[J]. J Parkinsons Dis, 2017, 7(2): 263-273. doi: 10.3233/JPD-171068
    [30] OCHI R, FUJITA N, GOTO N, et al. Region-specific brain area reductions and increased cholecystokinin positive neurons in diabetic OLETF rats: Implication for anxiety-like behavior[J]. J Physiol Sci, 2020, 70(1): 42. doi: 10.1186/s12576-020-00771-0
    [31] SHEN C J, ZHENG D, LI K X, et al. Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior[J]. Nat Med, 2019, 25(2): 337-349. doi: 10.1038/s41591-018-0299-9
    [32] DEUSSING J M, CHEN A. The corticotropin-releasing factor family: Physiology of the stress response[J]. Physiol Rev, 2018, 98(4): 2225-2286. doi: 10.1152/physrev.00042.2017
    [33] WINTER J, JUREK B. The interplay between oxytocin and the CRF system: Regulation of the stress response[J]. Cell Tissue Res, 2019, 375(1): 85-91. doi: 10.1007/s00441-018-2866-2
    [34] REYES B A S, KRAVETS J L, CONNELLY K L, et al. Localization of the delta opioid receptor and corticotropin-releasing factor in the amygdalar complex: Role in anxiety[J]. Brain Struct Funct, 2017, 222(2): 1007-1026. doi: 10.1007/s00429-016-1261-6
    [35] POMRENZE M B, GIOVANETTI S M, MAIYA R, et al. Dissecting the roles of GABA and neuropeptides from rat central amygdala CRF neurons in anxiety and fear learning[J]. Cell Rep, 2019, 29(1): 13-21.
    [36] WRÓBEL A, SEREFKO A, SZOPA A, et al. Inhibition of the CRF1 receptor influences the activity of antidepressant drugs in the forced swim test in rats[J]. Naunyn Schmiedebergs Arch Pharmacol, 2017, 390(8): 769-774.
    [37] LI N N, WANG Q, WANG Y, et al. Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis[J]. Stress, 2019, 22(5): 592-602.
    [38] YOON S, KIM Y K. The role of the oxytocin system in anxiety disorders[J]. Adv Exp Med Biol, 2020, 1191(1): 103-120.
    [39] NA K S, WON E, KANG J, et al. Interaction effects of oxytocin receptor gene polymorphism and depression on hippocampal volume[J]. Psychiatry Res Neuroimaging, 2018, 282: 18-23.
    [40] LAZZARI V M, ZIMMERMANN-PERUZATTO J M, et al. Hippocampal gene expression patterns in oxytocin male knockout mice are related to impaired social interaction[J]. Behav Brain Res, 2019, 364: 464-468.
    [41] ABDELWAHAB L A, GALAL O O, ABD EL-RAHMAN S S, et al. Targeting the oxytocin system to ameliorate early life depressive-like behaviors in maternally-separated rats[J]. Biol Pharm Bull, 2021, 44(10): 1445-1457.
    [42] SGRITTA M, DOOLING S W, BUFFINGTON S A, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder[J]. Neuron, 2019, 101(2): 246-259.
    [43] VARIAN B J, POUTAHIDIS T, DIBENEDICTIS B T, et al. Microbial lysate upregulates host oxytocin[J]. Brain Behav Immun, 2017, 61(5): 36-49.
  • 加载中
计量
  • 文章访问数:  449
  • HTML全文浏览量:  120
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-12
  • 网络出版日期:  2022-09-26

目录

    /

    返回文章
    返回