留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型体脂指标对云南彝族人群代谢综合征的预测价值研究

郭妮 姬燕梅 蒙妮 李吉胜 贺仙钰 刀梦瑶 金醒昉

郭妮, 姬燕梅, 蒙妮, 李吉胜, 贺仙钰, 刀梦瑶, 金醒昉. 新型体脂指标对云南彝族人群代谢综合征的预测价值研究[J]. 中华全科医学, 2024, 22(3): 393-397. doi: 10.16766/j.cnki.issn.1674-4152.003410
引用本文: 郭妮, 姬燕梅, 蒙妮, 李吉胜, 贺仙钰, 刀梦瑶, 金醒昉. 新型体脂指标对云南彝族人群代谢综合征的预测价值研究[J]. 中华全科医学, 2024, 22(3): 393-397. doi: 10.16766/j.cnki.issn.1674-4152.003410
GUO Ni, JI Yanmei, MENG Ni, LI Jisheng, HE Xianyu, DAO Mengyao, JIN Xingfang. Study on the predictive value of innovative adipose indexes for metabolic syndrome of Yi people in Yunnan Province[J]. Chinese Journal of General Practice, 2024, 22(3): 393-397. doi: 10.16766/j.cnki.issn.1674-4152.003410
Citation: GUO Ni, JI Yanmei, MENG Ni, LI Jisheng, HE Xianyu, DAO Mengyao, JIN Xingfang. Study on the predictive value of innovative adipose indexes for metabolic syndrome of Yi people in Yunnan Province[J]. Chinese Journal of General Practice, 2024, 22(3): 393-397. doi: 10.16766/j.cnki.issn.1674-4152.003410

新型体脂指标对云南彝族人群代谢综合征的预测价值研究

doi: 10.16766/j.cnki.issn.1674-4152.003410
基金项目: 

中央引导地方科技发展资金项目 202307AB110005

详细信息
    通讯作者:

    金醒昉,E-mail:jinxf177@126.com

  • 中图分类号: R589  R446.11

Study on the predictive value of innovative adipose indexes for metabolic syndrome of Yi people in Yunnan Province

  • 摘要:   目的  对比新型体脂指标与传统体脂指标对云南彝族代谢综合征(MS)患病风险的预测价值。  方法  2018年11月—2023年9月期间通过随机整群抽样选取云南3个彝族聚居地居民共508名作为研究对象,收集传统体脂指标腰围、臀围、BMI、腰高比(WHtR)及相关化验指标,计算新型体脂指标中国内脏脂肪指数(CVAI)、内脏脂肪指数(VAI)、脂质蓄积指数(LAP),进行统计分析。  结果  云南彝族人群代谢综合征的患病率约为20.01%(102/508)。Spearman相关性分析显示MS与各体脂指标均有相关性。ROC曲线分析显示,各体脂指标的曲线下面积均>0.7,其中CVAI的AUC最大(AUC=0.872);CVAI、VAI、LAP最佳截断值分别为120.20、2.02、56.36;在不同性别亚组及体质量亚组中,新型体脂指标的预测价值均优于传统指标。根据ROC曲线的最佳截断值定义分组为C0组(CVAI<120.20)、C1组(CVAI≥120.20),V0组(VAI<2.02)、V1组(VAI≥2.02),L0组(LAP<56.36)、L1组(LAP≥56.36);多因素logistic回归分析显示,C1组发生MS的风险为C0组的8.484倍;V1组发生MS的风险为V0组的13.602倍;C1组发生MS的风险为C0组的4.916倍。  结论  新型体脂指标预测云南彝族人群MS具有一定的优势,但在相关血脂指标缺失时,传统指标也有一定的价值;当新型体脂指标超过最佳截断值时,MS的患病风险将显著升高。

     

  • 图  1  各体脂指标预测彝族居民MS发生风险的ROC曲线

    Figure  1.  ROC curve for adiposity index predicting MS risk in Yi people

    图  2  不同性别彝族居民各体脂指标预测MS的ROC曲线

    Figure  2.  ROC curve for adiposity index predicting MS in Yi people of varying genders

    图  3  不同体质量彝族居民各体脂指标预测MS的ROC曲线

    Figure  3.  ROC curves for adiposity index predicting MS in Yi people of varying BMI

    表  1  2组彝族居民基线资料比较

    Table  1.   Comparison of baseline data between two groups of Yi residents

    项目 非MS组(n=406) MS组(n=102) 统计量 P
    年龄[M(P25, P75),岁] 60.50(53,68) 59(52.75,67.25) -1.079a 0.281
    性别(男性/女性,例) 147/259 29/73 1.474b 0.141
    空腹血糖[M(P25, P75), mmol/L] 4.94(4.61, 5.30) 5.40(4.91, 6.19) -6.440a <0.001
    TG[M(P25, P75), mmol/L] 1.25(0.93, 1.68) 2.49(2.02, 3.54) -11.768a <0.001
    HDL-C(x±s, mmol/L) 1.71±0.43 1.31±0.34 10.170c <0.001
    LDL-C(x±s, mmol/L) 3.33±0.85 3.67±1.18 2.717c 0.007
    CHOL(x±s, mmol/L) 5.49±1.02 6.12±1.24 4.772c <0.001
    SBP(x±s, mmHg) 139.19±23.58 148.51±20.19 4.021c <0.001
    DBP(x±s, mmHg) 82.94±13.55 86.73±10.84 2.992c 0.003
    身高(x±s, cm) 153.25±8.65 152.67±7.90 0.615c 0.539
    体重(x±s, kg) 53.82±9.79 64.10±11.99 8.023c <0.001
    腰围(x±s, cm) 79.60±9.86 93.46±9.14 12.871c <0.001
    臀围(x±s, cm) 92.31±7.11 101.16±9.29 10.525c <0.001
    BMI[M(P25, P75)] 22.67(20.41, 24.77) 26.75(24.39, 29.85) -9.619a <0.001
    WHtR(x±s) 0.52±0.07 0.61±0.06 12.265c <0.001
    CVAI[M(P25, P75)] 81.71(56.27, 104.25) 138.09(122.94, 156.52) -12.471a <0.001
    VAI[M(P25, P75)] 1.18(0.75, 1.80) 3.48(2.29, 5.44) -12.010a <0.001
    LAP[M(P25, P75)] 14.89(-3.36, 31.78) 76.08(41.31, 115.69) -10.167a <0.001
    注:aZ值,b为χ2值,ct值。
    下载: 导出CSV

    表  2  各指标与代谢综合征的相关性分析

    Table  2.   Correlation analysis between each index and metabolic syndrome

    项目 体重 腰围 臀围 BMI WHtR CVAI VAI LAP
    r 0.342 0.520 0.410 0.427 0.504 0.554 0.533 0.452
    P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
    下载: 导出CSV

    表  3  各体脂指标预测彝族居民MS发生风险的ROC曲线结果

    Table  3.   ROC curve analysis of adipose indexes in predicting the risk of metabolic syndrome in Yi people

    项目 临界值 AUC(95% CI) 灵敏度(%) 特异度(%) 最大约登指数
    腰围 87.70 0.844(0.822~0.866) 80.4 79.4 0.598
    臀围 97.40 0.758(0.731~0.785) 69.9 71.3 0.412
    体重 57.07 0.723(0.669~0.753) 75.8 60.6 0.364
    BMI 25.80 0.769(0.742~0.796) 67.1 76.2 0.433
    WHtR 0.58 0.822(0.799~0.844) 78.1 74.8 0.529
    CVAI 120.20 0.872(0.852~0.892) 84.7 80.3 0.650
    VAI 2.02 0.857(0.836~0.877) 88.0 73.5 0.615
    LAP 56.36 0.808(0.779~0.838) 69.1 88.7 0.578
    下载: 导出CSV

    表  4  不同性别亚组彝族居民各体脂指标预测MS发生风险的ROC曲线结果

    Table  4.   ROC curve results of adipose indexes predicting the risk of metabolic syndrome in different genders among the Yi population

    指标 男性 女性
    临界值 AUC(95% CI) 灵敏度(%) 特异度(%) 临界值 AUC(95% CI) 灵敏度(%) 特异度(%)
    腰围 89.35 0.883(0.822~0.944) 82.8 88.4 84.75 0.874(0.829~0.919) 90.4 78.4
    臀围 95.75 0.817(0.729~0.904) 82.8 72.1 94.45 0.787(0.732~0.843) 80.8 64.9
    体重 62.50 0.803(0.706~0.900) 79.3 70.1 53.50 0.769(0.710~0.829) 79.5 66.0
    BMI 24.89 0.826(0.740~0.910) 72.4 79.6 24.13 0.851(0.805~0.898) 80.8 68.0
    WHtR 0.53 0.888(0.836~0.940) 96.6 68.0 0.57 0.797(0.741~0.853) 84.9 71.4
    CVAI 102.84 0.907(0.856~0.958) 89.7 79.6 114.37 0.896(0.854~0.937) 86.3 83.8
    VAI 1.90 0.878(0.809~0.948) 82.8 86.4 1.84 0.889(0.852~0.926) 93.2 71.0
    LAP 4.43 0.761(0.638~0.884) 69.0 85.7 50.18 0.936(0.907~0.966) 91.8 84.6
    下载: 导出CSV

    表  5  不同体质量亚组彝族居民各体脂指标预测MS发生风险的ROC曲线结果

    Table  5.   ROC curve results of adipose indexes in predicting the risk of metabolic syndrome in different BMI subgroups of Yi people

    指标 BMI偏低及正常组 BMI超重及肥胖组
    临界值 AUC(95% CI) 灵敏度(%) 特异度(%) 临界值 AUC(95% CI) 灵敏度(%) 特异度(%)
    腰围 80.65 0.789(0.688~0.889) 71.4 76.0 87.65 0.829(0.775~0.883) 87.7 68.9
    臀围 94.35 0.690(0.580~0.801) 52.4 80.8 98.25 0.713(0.643~0.783) 71.6 64.4
    体重 52.50 0.582(0.459~0.705) 47.6 33.2 70.50 0.619(0.540~0.698) 35.8 86.7
    BMI 20.57 0.667(0.568~0.767) 90.5 39.5 28.31 0.705(0.633~0.776) 51.9 81.5
    WHtR 0.53 0.793(0.710~0.875) 81.0 69.4 0.59 0.814(0.758~0.871) 74.1 80.0
    CVAI 102.97 0.860(0.772~0.948) 71.4 86.7 120.20 0.837(0.784~0.890) 87.7 70.4
    VAI 1.70 0.887(0.812~0.962) 95.2 74.5 2.03 0.854(0.812~0.962) 87.7 77.0
    LAP 41.16 0.674(0.507~0.842) 57.1 89.7 59.06 0.819(0.755~0.884) 71.6 90.4
    下载: 导出CSV

    表  6  各指标与MS的多因素logistic回归分析

    Table  6.   Multivariate logistic regression analysis of each index and MS

    变量 B SE Waldχ2 P OR(95% CI)
    C1 2.138 0.594 12.976 <0.001 8.484(2.651~27.155)
    V1 2.610 0.576 20.509 <0.001 13.602(4.395~42.093)
    L1 1.592 0.551 8.360 0.004 4.916(1.670~14.468)
    空腹血糖 0.360 0.087 17.053 <0.001 1.434(1.208~1.701)
    TG -0.315 0.124 6.495 0.011 0.729(0.572~0.930)
    CHOL 0.783 0.276 8.048 0.005 2.189(1.274~3.761)
    注:变量赋值方法如下,非MS=0,MS=1;女性=0,男性=1;C0=0,CI=1;V0=0,V1=1;L0=0,L1=1;其余连续型变量以实际值赋值。
    下载: 导出CSV
  • [1] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)(上)[J]. 中国实用内科杂志, 2021, 41(8): 668-695. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYX202112018.htm
    [2] 李燕萍, 周裕婧, 朱士胜, 等. 中国老年人代谢综合征患病率META分析[J]. 现代预防医学, 2022, 49(5): 913-917. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF202205028.htm
    [3] GIRON-ULLOA A, GONZALEZ-DOMINGUEZ E, KLIMEK R S, et al. Specific macrophage subsets accumulate in human subcutaneous and omental fat depots during obesity[J]. Immunol Cell Biol, 2020, 98(10): 868-882. doi: 10.1111/imcb.12380
    [4] POETSCH M S, STRANO A, GUAN K. Role of Leptin in cardiovascular diseases[J]. Front Endocrinol (Lausanne), 2020, 11: 354. doi: 10.3389/fendo.2020.00354
    [5] NEELAND I J, ROSS R, DESPRES J P, et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement[J]. Lancet Diabetes Endocrinol, 2019, 7(9): 715-725. doi: 10.1016/S2213-8587(19)30084-1
    [6] LIM U, MONROE K R, BUCHTHAL S, et al. Propensity for intra-abdominal and hepatic adiposity varies among ethnic groups[J]. Gastroenterology, 2019, 156(4): 966-975. doi: 10.1053/j.gastro.2018.11.021
    [7] 李婷欣, 刘玉萍, 但立峰, 等. 四川阿坝地区高原藏族代谢综合征患病率及危险因素调查[J]. 现代预防医学, 2020, 47(23): 4235-4240. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF202023003.htm
    [8] 张竞, 阿地拉·阿里木, 郭艳英, 等. 乌鲁木齐市天山区维吾尔族女性围绝经期和绝经后期代谢综合征现况及危险因素分析[J]. 中华全科医学, 2023, 21(1): 73-76, 126. doi: 10.16766/j.cnki.issn.1674-4152.002815
    [9] ZHANG X, DING Y, SHAO Y, et al. Visceral obesity-related indices in the identification of individuals with metabolic syndrome among different ethnicities in Xinjiang, China[J]. Diabetes Metab Syndr Obes, 2021, 14: 1609-1620. doi: 10.2147/DMSO.S306908
    [10] 高芸艺, 冯晓冰, 程扬帆, 等. 对比分析肥胖指标对四川地区汉族与彝族成人代谢综合征的预测价值[J]. 四川大学学报(医学版), 2019, 50(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYK201901015.htm
    [11] HAN M, QIE R, LI Q, et al. Chinese visceral adiposity index, a novel indicator of visceral obesity for assessing the risk of incident hypertension in a prospective cohort study[J]. Br J Nutr, 2020, 126(4): 612-620.
    [12] HUANG Y C, HUANG J C, LIN C I, et al. Comparison of innovative and traditional cardiometabolic indices in estimating atherosclerotic cardiovascular disease risk in adults[J]. Diagnostics(Basel), 2021, 11(4): 603.
    [13] PAN L, XU Q, LIU J, et al. Dose-response relationship between Chinese visceral adiposity index and type 2 diabetes mellitus among middle-aged and elderly Chinese[J]. Front Endocrinol(Lausanne), 2022, 13: 959860. DOI: 10.3389/fendo.2022.959860.
    [14] WAN H, WANG Y, XIANG Q, et al. Associations between abdominal obesity indices and diabetic complications: Chinese visceral adiposity index and neck circumference[J]. Cardiovasc Diabetol, 2020, 19(1): 118. doi: 10.1186/s12933-020-01095-4
    [15] CHEN X, SHI F, XIAO J, et al. Associations between abdominal obesity indices and nonalcoholic fatty liver disease: Chinese visceral adiposity index[J]. Front Endocrinol(Lausanne), 2022, 13: 831960. DOI: 10.3389/fendo.2022.831960.
    [16] 李婧, 李小凤, 闫妮, 等. 评估肥胖相关指标对非酒精性脂肪肝的筛查价值[J]. 中华全科医学, 2023, 21(2): 195-198. doi: 10.16766/j.cnki.issn.1674-4152.002843
    [17] QIAN J D, LI X M, CHEN D S, et al. Comparative analysis of the association between traditional and lipid-related obesity indicators and isolated systolic hypertension[J]. BMC Cardiovasc Disord, 2022, 22(1): 119. doi: 10.1186/s12872-022-02564-2
    [18] WANG Y, ZHAO X, CHEN Y, et al. Visceral adiposity measures are strongly associated with cardiovascular disease among female participants in Southwest China: a population-based prospective study[J]. Front Endocrinol (Lausanne), 2022, 13: 969753. DOI: 10.3389/fendo.2022.969753.
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  70
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-19
  • 网络出版日期:  2024-05-27

目录

    /

    返回文章
    返回