Study on the predictive value of innovative adipose indexes for metabolic syndrome of Yi people in Yunnan Province
-
摘要:
目的 对比新型体脂指标与传统体脂指标对云南彝族代谢综合征(MS)患病风险的预测价值。 方法 2018年11月—2023年9月期间通过随机整群抽样选取云南3个彝族聚居地居民共508名作为研究对象,收集传统体脂指标腰围、臀围、BMI、腰高比(WHtR)及相关化验指标,计算新型体脂指标中国内脏脂肪指数(CVAI)、内脏脂肪指数(VAI)、脂质蓄积指数(LAP),进行统计分析。 结果 云南彝族人群代谢综合征的患病率约为20.01%(102/508)。Spearman相关性分析显示MS与各体脂指标均有相关性。ROC曲线分析显示,各体脂指标的曲线下面积均>0.7,其中CVAI的AUC最大(AUC=0.872);CVAI、VAI、LAP最佳截断值分别为120.20、2.02、56.36;在不同性别亚组及体质量亚组中,新型体脂指标的预测价值均优于传统指标。根据ROC曲线的最佳截断值定义分组为C0组(CVAI<120.20)、C1组(CVAI≥120.20),V0组(VAI<2.02)、V1组(VAI≥2.02),L0组(LAP<56.36)、L1组(LAP≥56.36);多因素logistic回归分析显示,C1组发生MS的风险为C0组的8.484倍;V1组发生MS的风险为V0组的13.602倍;C1组发生MS的风险为C0组的4.916倍。 结论 新型体脂指标预测云南彝族人群MS具有一定的优势,但在相关血脂指标缺失时,传统指标也有一定的价值;当新型体脂指标超过最佳截断值时,MS的患病风险将显著升高。 Abstract:Objective To compare the predictive value of innovative and traditional adiposity indices for metabolic syndrome (MS) risk in the Yi people of Yunnan Province. Methods A total of 508 residents from 3 Yi settlements in Yunnan Province were selected by random cluster sampling during November 2018 to September 2023. The traditional adipose indexes of waist circumference, hip circumference, BMI, waist-to-height ratio (WHtR) and related laboratory indexes were collected, and the innovative adipose indexes of China visceral adipose index (CVAI), visceral adipose index (VAI) and lipid accumulation product (LAP) were calculated. Statistical analysis was performed. Results The prevalence of metabolic syndrome was 20.01% (102/508) in the in the Yi population of Yunnan Province. Spearman correlation analysis showed that MS was significantly correlated with all adiposity indices. ROC curve analysis showed that the area under the curve of each adipose indexes was greater than 0.7, and the AUC of CVAI was the largest (AUC=0.872). The optimal cut-off values of CVAI, VAI and LAP were 120.20, 2.02 and 56.36, respectively. In different gender and body mass subgroups, the predictive value of the innovative adipose indexes is better than that of the traditional indices. According to the optimal cut-off value of the ROC curve, the groups were defined as C0 (CVAI < 120.20), C1 (CVAI≥120.20), V0 (VAI < 2.02), V1 (VAI≥2.02), L0 (LAP < 56.36) and L1 (LAP≥56.36), Multivariate logistic regression analysis showed that the risk of MS was 8.484 times higher in group C1 than in group C0. The risk of MS was 13.602 times higher in group V1 than in group V0. The risk of MS was 4.916 times higher in group C1 than in group C0. Conclusion The innovative adipose index has certain advantages in predicting MS in the Yi population of Yunnan Province, but the traditional index is also valuable when the relevant lipid index is missing. When the innovative adipose indexes exceed the optimal cut-off value, the risk of MS is significantly increased. -
Key words:
- Innovative adipose indexes /
- Metabolic syndrome /
- Yunnan Yi people /
- Predictive value
-
表 1 2组彝族居民基线资料比较
Table 1. Comparison of baseline data between two groups of Yi residents
项目 非MS组(n=406) MS组(n=102) 统计量 P值 年龄[M(P25, P75),岁] 60.50(53,68) 59(52.75,67.25) -1.079a 0.281 性别(男性/女性,例) 147/259 29/73 1.474b 0.141 空腹血糖[M(P25, P75), mmol/L] 4.94(4.61, 5.30) 5.40(4.91, 6.19) -6.440a <0.001 TG[M(P25, P75), mmol/L] 1.25(0.93, 1.68) 2.49(2.02, 3.54) -11.768a <0.001 HDL-C(x±s, mmol/L) 1.71±0.43 1.31±0.34 10.170c <0.001 LDL-C(x±s, mmol/L) 3.33±0.85 3.67±1.18 2.717c 0.007 CHOL(x±s, mmol/L) 5.49±1.02 6.12±1.24 4.772c <0.001 SBP(x±s, mmHg) 139.19±23.58 148.51±20.19 4.021c <0.001 DBP(x±s, mmHg) 82.94±13.55 86.73±10.84 2.992c 0.003 身高(x±s, cm) 153.25±8.65 152.67±7.90 0.615c 0.539 体重(x±s, kg) 53.82±9.79 64.10±11.99 8.023c <0.001 腰围(x±s, cm) 79.60±9.86 93.46±9.14 12.871c <0.001 臀围(x±s, cm) 92.31±7.11 101.16±9.29 10.525c <0.001 BMI[M(P25, P75)] 22.67(20.41, 24.77) 26.75(24.39, 29.85) -9.619a <0.001 WHtR(x±s) 0.52±0.07 0.61±0.06 12.265c <0.001 CVAI[M(P25, P75)] 81.71(56.27, 104.25) 138.09(122.94, 156.52) -12.471a <0.001 VAI[M(P25, P75)] 1.18(0.75, 1.80) 3.48(2.29, 5.44) -12.010a <0.001 LAP[M(P25, P75)] 14.89(-3.36, 31.78) 76.08(41.31, 115.69) -10.167a <0.001 注:a为Z值,b为χ2值,c为t值。 表 2 各指标与代谢综合征的相关性分析
Table 2. Correlation analysis between each index and metabolic syndrome
项目 体重 腰围 臀围 BMI WHtR CVAI VAI LAP r值 0.342 0.520 0.410 0.427 0.504 0.554 0.533 0.452 P值 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 表 3 各体脂指标预测彝族居民MS发生风险的ROC曲线结果
Table 3. ROC curve analysis of adipose indexes in predicting the risk of metabolic syndrome in Yi people
项目 临界值 AUC(95% CI) 灵敏度(%) 特异度(%) 最大约登指数 腰围 87.70 0.844(0.822~0.866) 80.4 79.4 0.598 臀围 97.40 0.758(0.731~0.785) 69.9 71.3 0.412 体重 57.07 0.723(0.669~0.753) 75.8 60.6 0.364 BMI 25.80 0.769(0.742~0.796) 67.1 76.2 0.433 WHtR 0.58 0.822(0.799~0.844) 78.1 74.8 0.529 CVAI 120.20 0.872(0.852~0.892) 84.7 80.3 0.650 VAI 2.02 0.857(0.836~0.877) 88.0 73.5 0.615 LAP 56.36 0.808(0.779~0.838) 69.1 88.7 0.578 表 4 不同性别亚组彝族居民各体脂指标预测MS发生风险的ROC曲线结果
Table 4. ROC curve results of adipose indexes predicting the risk of metabolic syndrome in different genders among the Yi population
指标 男性 女性 临界值 AUC(95% CI) 灵敏度(%) 特异度(%) 临界值 AUC(95% CI) 灵敏度(%) 特异度(%) 腰围 89.35 0.883(0.822~0.944) 82.8 88.4 84.75 0.874(0.829~0.919) 90.4 78.4 臀围 95.75 0.817(0.729~0.904) 82.8 72.1 94.45 0.787(0.732~0.843) 80.8 64.9 体重 62.50 0.803(0.706~0.900) 79.3 70.1 53.50 0.769(0.710~0.829) 79.5 66.0 BMI 24.89 0.826(0.740~0.910) 72.4 79.6 24.13 0.851(0.805~0.898) 80.8 68.0 WHtR 0.53 0.888(0.836~0.940) 96.6 68.0 0.57 0.797(0.741~0.853) 84.9 71.4 CVAI 102.84 0.907(0.856~0.958) 89.7 79.6 114.37 0.896(0.854~0.937) 86.3 83.8 VAI 1.90 0.878(0.809~0.948) 82.8 86.4 1.84 0.889(0.852~0.926) 93.2 71.0 LAP 4.43 0.761(0.638~0.884) 69.0 85.7 50.18 0.936(0.907~0.966) 91.8 84.6 表 5 不同体质量亚组彝族居民各体脂指标预测MS发生风险的ROC曲线结果
Table 5. ROC curve results of adipose indexes in predicting the risk of metabolic syndrome in different BMI subgroups of Yi people
指标 BMI偏低及正常组 BMI超重及肥胖组 临界值 AUC(95% CI) 灵敏度(%) 特异度(%) 临界值 AUC(95% CI) 灵敏度(%) 特异度(%) 腰围 80.65 0.789(0.688~0.889) 71.4 76.0 87.65 0.829(0.775~0.883) 87.7 68.9 臀围 94.35 0.690(0.580~0.801) 52.4 80.8 98.25 0.713(0.643~0.783) 71.6 64.4 体重 52.50 0.582(0.459~0.705) 47.6 33.2 70.50 0.619(0.540~0.698) 35.8 86.7 BMI 20.57 0.667(0.568~0.767) 90.5 39.5 28.31 0.705(0.633~0.776) 51.9 81.5 WHtR 0.53 0.793(0.710~0.875) 81.0 69.4 0.59 0.814(0.758~0.871) 74.1 80.0 CVAI 102.97 0.860(0.772~0.948) 71.4 86.7 120.20 0.837(0.784~0.890) 87.7 70.4 VAI 1.70 0.887(0.812~0.962) 95.2 74.5 2.03 0.854(0.812~0.962) 87.7 77.0 LAP 41.16 0.674(0.507~0.842) 57.1 89.7 59.06 0.819(0.755~0.884) 71.6 90.4 表 6 各指标与MS的多因素logistic回归分析
Table 6. Multivariate logistic regression analysis of each index and MS
变量 B SE Waldχ2 P值 OR(95% CI) C1 2.138 0.594 12.976 <0.001 8.484(2.651~27.155) V1 2.610 0.576 20.509 <0.001 13.602(4.395~42.093) L1 1.592 0.551 8.360 0.004 4.916(1.670~14.468) 空腹血糖 0.360 0.087 17.053 <0.001 1.434(1.208~1.701) TG -0.315 0.124 6.495 0.011 0.729(0.572~0.930) CHOL 0.783 0.276 8.048 0.005 2.189(1.274~3.761) 注:变量赋值方法如下,非MS=0,MS=1;女性=0,男性=1;C0=0,CI=1;V0=0,V1=1;L0=0,L1=1;其余连续型变量以实际值赋值。 -
[1] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)(上)[J]. 中国实用内科杂志, 2021, 41(8): 668-695. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYX202112018.htm [2] 李燕萍, 周裕婧, 朱士胜, 等. 中国老年人代谢综合征患病率META分析[J]. 现代预防医学, 2022, 49(5): 913-917. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF202205028.htm [3] GIRON-ULLOA A, GONZALEZ-DOMINGUEZ E, KLIMEK R S, et al. Specific macrophage subsets accumulate in human subcutaneous and omental fat depots during obesity[J]. Immunol Cell Biol, 2020, 98(10): 868-882. doi: 10.1111/imcb.12380 [4] POETSCH M S, STRANO A, GUAN K. Role of Leptin in cardiovascular diseases[J]. Front Endocrinol (Lausanne), 2020, 11: 354. doi: 10.3389/fendo.2020.00354 [5] NEELAND I J, ROSS R, DESPRES J P, et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement[J]. Lancet Diabetes Endocrinol, 2019, 7(9): 715-725. doi: 10.1016/S2213-8587(19)30084-1 [6] LIM U, MONROE K R, BUCHTHAL S, et al. Propensity for intra-abdominal and hepatic adiposity varies among ethnic groups[J]. Gastroenterology, 2019, 156(4): 966-975. doi: 10.1053/j.gastro.2018.11.021 [7] 李婷欣, 刘玉萍, 但立峰, 等. 四川阿坝地区高原藏族代谢综合征患病率及危险因素调查[J]. 现代预防医学, 2020, 47(23): 4235-4240. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF202023003.htm [8] 张竞, 阿地拉·阿里木, 郭艳英, 等. 乌鲁木齐市天山区维吾尔族女性围绝经期和绝经后期代谢综合征现况及危险因素分析[J]. 中华全科医学, 2023, 21(1): 73-76, 126. doi: 10.16766/j.cnki.issn.1674-4152.002815 [9] ZHANG X, DING Y, SHAO Y, et al. Visceral obesity-related indices in the identification of individuals with metabolic syndrome among different ethnicities in Xinjiang, China[J]. Diabetes Metab Syndr Obes, 2021, 14: 1609-1620. doi: 10.2147/DMSO.S306908 [10] 高芸艺, 冯晓冰, 程扬帆, 等. 对比分析肥胖指标对四川地区汉族与彝族成人代谢综合征的预测价值[J]. 四川大学学报(医学版), 2019, 50(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYK201901015.htm [11] HAN M, QIE R, LI Q, et al. Chinese visceral adiposity index, a novel indicator of visceral obesity for assessing the risk of incident hypertension in a prospective cohort study[J]. Br J Nutr, 2020, 126(4): 612-620. [12] HUANG Y C, HUANG J C, LIN C I, et al. Comparison of innovative and traditional cardiometabolic indices in estimating atherosclerotic cardiovascular disease risk in adults[J]. Diagnostics(Basel), 2021, 11(4): 603. [13] PAN L, XU Q, LIU J, et al. Dose-response relationship between Chinese visceral adiposity index and type 2 diabetes mellitus among middle-aged and elderly Chinese[J]. Front Endocrinol(Lausanne), 2022, 13: 959860. DOI: 10.3389/fendo.2022.959860. [14] WAN H, WANG Y, XIANG Q, et al. Associations between abdominal obesity indices and diabetic complications: Chinese visceral adiposity index and neck circumference[J]. Cardiovasc Diabetol, 2020, 19(1): 118. doi: 10.1186/s12933-020-01095-4 [15] CHEN X, SHI F, XIAO J, et al. Associations between abdominal obesity indices and nonalcoholic fatty liver disease: Chinese visceral adiposity index[J]. Front Endocrinol(Lausanne), 2022, 13: 831960. DOI: 10.3389/fendo.2022.831960. [16] 李婧, 李小凤, 闫妮, 等. 评估肥胖相关指标对非酒精性脂肪肝的筛查价值[J]. 中华全科医学, 2023, 21(2): 195-198. doi: 10.16766/j.cnki.issn.1674-4152.002843 [17] QIAN J D, LI X M, CHEN D S, et al. Comparative analysis of the association between traditional and lipid-related obesity indicators and isolated systolic hypertension[J]. BMC Cardiovasc Disord, 2022, 22(1): 119. doi: 10.1186/s12872-022-02564-2 [18] WANG Y, ZHAO X, CHEN Y, et al. Visceral adiposity measures are strongly associated with cardiovascular disease among female participants in Southwest China: a population-based prospective study[J]. Front Endocrinol (Lausanne), 2022, 13: 969753. DOI: 10.3389/fendo.2022.969753.