留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多序列MRI影像组学预测早期宫颈癌淋巴血管侵犯的研究

王海波 崔薇 杨玮丽

王海波, 崔薇, 杨玮丽. 基于多序列MRI影像组学预测早期宫颈癌淋巴血管侵犯的研究[J]. 中华全科医学, 2021, 19(12): 2088-2092. doi: 10.16766/j.cnki.issn.1674-4152.002244
引用本文: 王海波, 崔薇, 杨玮丽. 基于多序列MRI影像组学预测早期宫颈癌淋巴血管侵犯的研究[J]. 中华全科医学, 2021, 19(12): 2088-2092. doi: 10.16766/j.cnki.issn.1674-4152.002244
WANG Hai-bo, CUI Wei, YANG Wei-li. Multi-sequence MRI-based radiomics predicting lymph-vascular space invasion in early-stage cervical cancer[J]. Chinese Journal of General Practice, 2021, 19(12): 2088-2092. doi: 10.16766/j.cnki.issn.1674-4152.002244
Citation: WANG Hai-bo, CUI Wei, YANG Wei-li. Multi-sequence MRI-based radiomics predicting lymph-vascular space invasion in early-stage cervical cancer[J]. Chinese Journal of General Practice, 2021, 19(12): 2088-2092. doi: 10.16766/j.cnki.issn.1674-4152.002244

基于多序列MRI影像组学预测早期宫颈癌淋巴血管侵犯的研究

doi: 10.16766/j.cnki.issn.1674-4152.002244
基金项目: 

浙江省医药卫生科技计划项目 2019RC274

详细信息
    通讯作者:

    王海波,E-mail: wang800080@163.com

  • 中图分类号: R737.33R445.2

Multi-sequence MRI-based radiomics predicting lymph-vascular space invasion in early-stage cervical cancer

  • 摘要:   目的  探索基于多序列MRI图像的影像组学方法在预测早期宫颈癌淋巴血管侵犯(LVSI)中的临床价值。  方法  选取2015年1月—2020年2月宁波大学附属人民医院收治经病理证实的早期宫颈癌患者134例,分层抽样选取训练组91例,验证组43例,术前均行MRI平扫、对比增强(CE-MRI)及弥散成像(DWI)检查。在T2WI-FS、CE-MRI及DWI序列图像上分别勾画肿瘤感兴趣区,采用LASSO回归及诺模图法提取影像组学特征并建立预测模型,训练组进行特征选择分类及模型建立,验证组对构建的预测模型进行验证,分析基于MRI各序列影像组学模型对早期宫颈癌LVSI的预测效能。  结果  采用LASSO回归在早期宫颈癌患者的T2WI-FS、CE-MRI和DWI序列影像中分别提取具有预测意义的宫颈癌LVSI的影像组学特征,WavEnLH_s-4、Horzl_LngREmph在各序列中均被筛选出。通过logistics回归模型分别构建的不同序列MRI的影像组学模型对早期宫颈癌LVSI诊断效能均较高,T2WI-FS、CE-MRI及DWI在训练组的AUC分别为0.810、0.803和0.781,在验证组的AUC分别为0.785、0.761和0.752。使用诺模图法构建的多序列MRI影像组学在训练组的AUC为0.893,在验证组的AUC为0.859。  结论  通过诺模图法构建的基于T2WI-FS、CE-MRI及DWI序列影像组学模型作为一种客观的影像分析方法,对早期宫颈癌LVSI具有较高的预测效能并具有一定临床应用价值。

     

  • 图  1  宫颈癌ROI选取示意图

    注:A~C分别示轴位T2WI-FS、矢状位T1WI增强及轴位DWI序列图像中宫颈癌病变区域的ROI选取。

    图  2  宫颈癌ROI影像组学特征参数提取

    注:A~C分别示于轴位T2WI-FS、矢状位T1WI增强及轴位DWI序列图像对宫颈癌ROI所提取的影像组学特征参数示意。

    表  1  2组早期宫颈癌患者临床特征比较

    组别 例数 年龄(x±s, 岁) FIGO分期[例(%)] 病理类型[例(%)] LVSI[例(%)]
    Ⅰa Ⅰb Ⅱa 腺癌 鳞癌 腺鳞癌 小细胞癌 其他癌
    训练组 91 52.6±14.2 25(27.5) 34(37.4) 32(35.1) 44(48.3) 24(26.4) 13(14.3) 5(5.5) 5(5.5) 53(58.2) 38(41.7)
    验证组 43 50.3±12.3 10(23.2) 18(41.9) 15(34.9) 19(44.2) 12(27.9) 5(11.6) 4(9.3) 3(7.0) 26(60.5) 17(39.5)
    统计量 0.926a 0.352b 1.277b 0.060b
    P 0.356 0.839 0.888 0.852
    注:at值,bχ2值。
    下载: 导出CSV

    表  2  T2WI-FS、CE-MRI及DWI序列LASSO降维后提取的纹理特征参数

    检查方法 纹理特征参数
    T2WI-FS S(1, 0)SumOfSqs;S(3, -3)SumEntrp;S(1, -1)DifVarnc;WavEnLH_s-4;Vertl_RLNonUni;Teta1;135dr_GLevNonU;45dgr_RLNonUni;Horzl_LngREmph;S(4, -4)DifVarnc
    CE-MRI Teta3;S(5, 0)InvDfMom;45dgr_RLNonUni;WavEnLL_s-4;S(4, 4)Entropy;Horzl_LngREmph;S(0, 3)DifVarnc;S(2, -2)SumVarnc;S(2, 0)InvDfMom;WavEnHL_s-5
    DWI Teta4;S(3, -3)Entropy;WavEnLL_s-4;S(2, 2)DifEntrp;S(1, -1)DifVarnc;S(0, 1)SumOfSqs;135dr_RLNonUni;Sigma;Vertl_RLNonUni;Horzl_LngREmph
    下载: 导出CSV

    表  3  各序列MRI影像组学预测宫颈癌LVSI的效能

    组别 T2WI-FS CE-MRI
    AUC(95% CI) 准确率(%) 灵敏度(%) 特异度(%) AUC(95% CI) 准确率(%) 灵敏度(%) 特异度(%)
    训练组 0.810(0.667~0.894) 82.8 83.3 80.9 0.803(0.716~0.899) 82.3 82.7 81.7
    验证组 0.785(0.623~0.870) 79.1 81.4 77.4 0.761(0.643~0.852) 75.1 78.7 76.5
    组别 DWI 多序列诺模图
    AUC(95% CI) 准确率(%) 灵敏度(%) 特异度(%) AUC(95% CI) 准确率(%) 灵敏度(%) 特异度(%)
    训练组 0.781(0.671~0.880) 78.2 77.6 73.8 0.893(0.799~0.997) 91.1 91.8 88.9
    验证组 0.752(0.631~0.832) 72.0 74.5 70.7 0.859(0.741~0.930) 86.2 87.8 85.1
    下载: 导出CSV
  • [1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
    [2] SHIM S H, LIM M C, KIM H J, et al. Can simple trachelectomy or conization show comparable survival rate compared with radical trachelectomy in IA1 cervical cancer patients with lymphovascular space invasion who wish to save fertility? A systematic review and guideline recommendation[J]. PLoS One, 2018, 13(1): e0189847. doi: 10.1371/journal.pone.0189847
    [3] LI M, WU S W, XIE Y Q, et al. Cervical invasion lymphovascular space invasion, and ovarian metastasis as predictors of lymph node metastasis and poor outcome on stages Ⅰ to Ⅲ endometrial cancers: A single-center retrospective study[J]. World J Surg Oncol, 2019, 17(1): 193. doi: 10.1186/s12957-019-1733-2
    [4] PATEL-LIPPMANN K, ROBBINS J B, BARROIHET L, et al. MR imaging of cervical cancer[J]. Magn Reson Imaging Clin N Am, 2017, 25(3): 635-649. doi: 10.1016/j.mric.2017.03.007
    [5] XIAO M, YAN B, LI Y, et al. Diagnostic performance of MR imaging in evaluating prognostic factors in patients with cervical cancer: A meta-analysis[J]. Eur Radiol, 2020, 30(3): 1405-1418. doi: 10.1007/s00330-019-06461-9
    [6] XIAO M, MA F, LI Y, et al. Multiparametric MRI-based radiomics nomogram for predicting lymph node metastasis in early-stage cervical cancer[J]. J Magn Reson Imaging, 2020, 52(3): 885-896. doi: 10.1002/jmri.27101
    [7] FANG J, ZHANG B, WANG S, et al. Association of MRI-derived radiomic biomarker with disease-free survival in patients with early-stage cervical cancer[J]. Theranostics, 2020, 10(5): 2284-2292. doi: 10.7150/thno.37429
    [8] LÓPEZ-CARBALLEIRA A, BALEATO-GONZÁLEZ S, GARCIA-FIGUEIRAS R, et al. Magnetic resonance imaging for staging and treatment planning in cervical cancer[J]. Radiologia, 2016, 58(4): 268-276. doi: 10.1016/j.rx.2015.11.008
    [9] NOMDEN C N, PÖTTER R, D E LEEUW A A C, et al. Nodal failure after chemo-radiation and MRI guided brachytherapy in cervical cancer: Patterns of failure in the EMBRACE study cohort[J]. Radiother Oncol, 2019, 134: 185-190. doi: 10.1016/j.radonc.2019.02.007
    [10] 霍文礼, 由英宁, 卢再鸣, 等. 18F-FDG PET/CT纹理特征联合MMP-7表达预测早期宫颈癌盆腔淋巴结转移[J]. 临床放射学, 2021, 40(1): 170-174. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFS202101039.htm
    [11] LU Y, PENG W, SONG J, et al. On the potential use of dynamic contrast-enhanced (DCE) MRI parameters as radiomic features of cervical cancer[J]. Med Phys, 2019, 46(11): 5098-5109. doi: 10.1002/mp.13821
    [12] JALAGUIER-COUDRAY A, VILLARD-MAHJOUB R, DELOUCHE A, et al. Value of dynamic contrast enhanced and diffusion weighted MR imaging in the detection of pathologic complete response in cervical cancer after neoadjuvant therapy: A retrospective observational study[J]. Radiology, 2017, 284(2): 432-442. doi: 10.1148/radiol.2017161299
    [13] PENG J, WANG W, ZENG D. Application of magnetic resonance imaging in diagnosis of Uterus Cervical Carcinoma[J]. J Xray Sci Technol, 2017, 25(2): 205-211.
    [14] LI Z, LI H, WANG S, et al. MR-Based radiomics nomogram of cervical cancer in prediction of the lymph-vascular space invasion preoperatively[J]. J Magn Reson Imaging, 2019, 49(5): 1420-1426. doi: 10.1002/jmri.26531
    [15] WANG T, GAO T, GUO H, et al. Preoperative prediction of parametrial invasion in early-stage cervical cancer with MRI-based radiomics nomogram[J]. Eur Radiol, 2020, 30(6): 3585-3593. doi: 10.1007/s00330-019-06655-1
    [16] LIN Y C, LIN C H, LU H Y, et al. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer[J]. Eur Radiol, 2020, 30(3): 1297-1305. doi: 10.1007/s00330-019-06467-3
    [17] VARGHESE B A, CHEN F, HWANG D H, et al. Differentiation of predominantly solid enhancing lipid-poor renal cell masses by use of contrast-enhanced CT: Evaluating the role of texture in tumor subtyping[J]. AJR Am J Roentgenol, 2018, 211(6): W288-296. https://pubmed.ncbi.nlm.nih.gov/30240299/
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  85
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 网络出版日期:  2022-03-02

目录

    /

    返回文章
    返回