Multi-sequence MRI-based radiomics predicting lymph-vascular space invasion in early-stage cervical cancer
-
摘要:
目的 探索基于多序列MRI图像的影像组学方法在预测早期宫颈癌淋巴血管侵犯(LVSI)中的临床价值。 方法 选取2015年1月—2020年2月宁波大学附属人民医院收治经病理证实的早期宫颈癌患者134例,分层抽样选取训练组91例,验证组43例,术前均行MRI平扫、对比增强(CE-MRI)及弥散成像(DWI)检查。在T2WI-FS、CE-MRI及DWI序列图像上分别勾画肿瘤感兴趣区,采用LASSO回归及诺模图法提取影像组学特征并建立预测模型,训练组进行特征选择分类及模型建立,验证组对构建的预测模型进行验证,分析基于MRI各序列影像组学模型对早期宫颈癌LVSI的预测效能。 结果 采用LASSO回归在早期宫颈癌患者的T2WI-FS、CE-MRI和DWI序列影像中分别提取具有预测意义的宫颈癌LVSI的影像组学特征,WavEnLH_s-4、Horzl_LngREmph在各序列中均被筛选出。通过logistics回归模型分别构建的不同序列MRI的影像组学模型对早期宫颈癌LVSI诊断效能均较高,T2WI-FS、CE-MRI及DWI在训练组的AUC分别为0.810、0.803和0.781,在验证组的AUC分别为0.785、0.761和0.752。使用诺模图法构建的多序列MRI影像组学在训练组的AUC为0.893,在验证组的AUC为0.859。 结论 通过诺模图法构建的基于T2WI-FS、CE-MRI及DWI序列影像组学模型作为一种客观的影像分析方法,对早期宫颈癌LVSI具有较高的预测效能并具有一定临床应用价值。 Abstract:Objective To explore the clinical value of multi-sequence MRI-based radiomics in predicting lymph-vascular space invasion (LVSI) in early-stage cervical cancer. Methods A total of 134 patients (91 cases in the training group and 43 cases in the validation group) with pathological early-stage cervical cancer in the Affiliated People's Hospital of Ningbo University from January 2015 to February 2020, were retrospectively collected. All patients underwent MRI plain scan, contrast-enhanced MRI (CE-MRI) and diffusion-weighted imaging (DWI) before surgery. MRI images of each sequence were obtained, and the region of interest was drawn. Radiomic features were extracted by using the least absolute shrinkage and selection operator (LASSO) and nomogram method to construct the predictive model. The training group was used to extract feature, establish signature and construct the predictive model. The validation group was used to verify the predictive model. Receiver operating characteristic curve was used to analyse the predictive effect of each sequence MRI-based radiomic model on LVSI in early-stage cervical cancer. Results The predictive LVSI features were extracted from T2WI-FS, CE-MRI and DWI sequence images in patients with early-stage cervical cancer by LASSO regression. WavEnLH_s-4 and Horzl_LngREmph were all screened out. Results showed that the diagnostic efficiency of multi-sequence MRI imaging models constructed by the Logistic regression model was high for LVSI in early-stage cervical cancer. AUC of T2WI-FS, CE-MRI and DWI was 0.810, 0.803 and 0.781, respectively, in the training group and 0.785, 0.761 and 0.752, respectively, in the verification group. The AUC of multi-sequence MRI-based radiomic model constructed by nomogram was 0.893 in the training group and 0.859 in the verification group. Conclusion As an objective image analysis method, the nomographic model based on T2WI-FS, CE-MRI and DWI sequence has a high predictive effect and certain clinical application value in LVSI of early-stage cervical cancer. -
表 1 2组早期宫颈癌患者临床特征比较
组别 例数 年龄(x±s, 岁) FIGO分期[例(%)] 病理类型[例(%)] LVSI[例(%)] Ⅰa Ⅰb Ⅱa 腺癌 鳞癌 腺鳞癌 小细胞癌 其他癌 有 无 训练组 91 52.6±14.2 25(27.5) 34(37.4) 32(35.1) 44(48.3) 24(26.4) 13(14.3) 5(5.5) 5(5.5) 53(58.2) 38(41.7) 验证组 43 50.3±12.3 10(23.2) 18(41.9) 15(34.9) 19(44.2) 12(27.9) 5(11.6) 4(9.3) 3(7.0) 26(60.5) 17(39.5) 统计量 0.926a 0.352b 1.277b 0.060b P值 0.356 0.839 0.888 0.852 注:a为t值,b为χ2值。 表 2 T2WI-FS、CE-MRI及DWI序列LASSO降维后提取的纹理特征参数
检查方法 纹理特征参数 T2WI-FS S(1, 0)SumOfSqs;S(3, -3)SumEntrp;S(1, -1)DifVarnc;WavEnLH_s-4;Vertl_RLNonUni;Teta1;135dr_GLevNonU;45dgr_RLNonUni;Horzl_LngREmph;S(4, -4)DifVarnc CE-MRI Teta3;S(5, 0)InvDfMom;45dgr_RLNonUni;WavEnLL_s-4;S(4, 4)Entropy;Horzl_LngREmph;S(0, 3)DifVarnc;S(2, -2)SumVarnc;S(2, 0)InvDfMom;WavEnHL_s-5 DWI Teta4;S(3, -3)Entropy;WavEnLL_s-4;S(2, 2)DifEntrp;S(1, -1)DifVarnc;S(0, 1)SumOfSqs;135dr_RLNonUni;Sigma;Vertl_RLNonUni;Horzl_LngREmph 表 3 各序列MRI影像组学预测宫颈癌LVSI的效能
组别 T2WI-FS CE-MRI AUC(95% CI) 准确率(%) 灵敏度(%) 特异度(%) AUC(95% CI) 准确率(%) 灵敏度(%) 特异度(%) 训练组 0.810(0.667~0.894) 82.8 83.3 80.9 0.803(0.716~0.899) 82.3 82.7 81.7 验证组 0.785(0.623~0.870) 79.1 81.4 77.4 0.761(0.643~0.852) 75.1 78.7 76.5 组别 DWI 多序列诺模图 AUC(95% CI) 准确率(%) 灵敏度(%) 特异度(%) AUC(95% CI) 准确率(%) 灵敏度(%) 特异度(%) 训练组 0.781(0.671~0.880) 78.2 77.6 73.8 0.893(0.799~0.997) 91.1 91.8 88.9 验证组 0.752(0.631~0.832) 72.0 74.5 70.7 0.859(0.741~0.930) 86.2 87.8 85.1 -
[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492 [2] SHIM S H, LIM M C, KIM H J, et al. Can simple trachelectomy or conization show comparable survival rate compared with radical trachelectomy in IA1 cervical cancer patients with lymphovascular space invasion who wish to save fertility? A systematic review and guideline recommendation[J]. PLoS One, 2018, 13(1): e0189847. doi: 10.1371/journal.pone.0189847 [3] LI M, WU S W, XIE Y Q, et al. Cervical invasion lymphovascular space invasion, and ovarian metastasis as predictors of lymph node metastasis and poor outcome on stages Ⅰ to Ⅲ endometrial cancers: A single-center retrospective study[J]. World J Surg Oncol, 2019, 17(1): 193. doi: 10.1186/s12957-019-1733-2 [4] PATEL-LIPPMANN K, ROBBINS J B, BARROIHET L, et al. MR imaging of cervical cancer[J]. Magn Reson Imaging Clin N Am, 2017, 25(3): 635-649. doi: 10.1016/j.mric.2017.03.007 [5] XIAO M, YAN B, LI Y, et al. Diagnostic performance of MR imaging in evaluating prognostic factors in patients with cervical cancer: A meta-analysis[J]. Eur Radiol, 2020, 30(3): 1405-1418. doi: 10.1007/s00330-019-06461-9 [6] XIAO M, MA F, LI Y, et al. Multiparametric MRI-based radiomics nomogram for predicting lymph node metastasis in early-stage cervical cancer[J]. J Magn Reson Imaging, 2020, 52(3): 885-896. doi: 10.1002/jmri.27101 [7] FANG J, ZHANG B, WANG S, et al. Association of MRI-derived radiomic biomarker with disease-free survival in patients with early-stage cervical cancer[J]. Theranostics, 2020, 10(5): 2284-2292. doi: 10.7150/thno.37429 [8] LÓPEZ-CARBALLEIRA A, BALEATO-GONZÁLEZ S, GARCIA-FIGUEIRAS R, et al. Magnetic resonance imaging for staging and treatment planning in cervical cancer[J]. Radiologia, 2016, 58(4): 268-276. doi: 10.1016/j.rx.2015.11.008 [9] NOMDEN C N, PÖTTER R, D E LEEUW A A C, et al. Nodal failure after chemo-radiation and MRI guided brachytherapy in cervical cancer: Patterns of failure in the EMBRACE study cohort[J]. Radiother Oncol, 2019, 134: 185-190. doi: 10.1016/j.radonc.2019.02.007 [10] 霍文礼, 由英宁, 卢再鸣, 等. 18F-FDG PET/CT纹理特征联合MMP-7表达预测早期宫颈癌盆腔淋巴结转移[J]. 临床放射学, 2021, 40(1): 170-174. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFS202101039.htm [11] LU Y, PENG W, SONG J, et al. On the potential use of dynamic contrast-enhanced (DCE) MRI parameters as radiomic features of cervical cancer[J]. Med Phys, 2019, 46(11): 5098-5109. doi: 10.1002/mp.13821 [12] JALAGUIER-COUDRAY A, VILLARD-MAHJOUB R, DELOUCHE A, et al. Value of dynamic contrast enhanced and diffusion weighted MR imaging in the detection of pathologic complete response in cervical cancer after neoadjuvant therapy: A retrospective observational study[J]. Radiology, 2017, 284(2): 432-442. doi: 10.1148/radiol.2017161299 [13] PENG J, WANG W, ZENG D. Application of magnetic resonance imaging in diagnosis of Uterus Cervical Carcinoma[J]. J Xray Sci Technol, 2017, 25(2): 205-211. [14] LI Z, LI H, WANG S, et al. MR-Based radiomics nomogram of cervical cancer in prediction of the lymph-vascular space invasion preoperatively[J]. J Magn Reson Imaging, 2019, 49(5): 1420-1426. doi: 10.1002/jmri.26531 [15] WANG T, GAO T, GUO H, et al. Preoperative prediction of parametrial invasion in early-stage cervical cancer with MRI-based radiomics nomogram[J]. Eur Radiol, 2020, 30(6): 3585-3593. doi: 10.1007/s00330-019-06655-1 [16] LIN Y C, LIN C H, LU H Y, et al. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer[J]. Eur Radiol, 2020, 30(3): 1297-1305. doi: 10.1007/s00330-019-06467-3 [17] VARGHESE B A, CHEN F, HWANG D H, et al. Differentiation of predominantly solid enhancing lipid-poor renal cell masses by use of contrast-enhanced CT: Evaluating the role of texture in tumor subtyping[J]. AJR Am J Roentgenol, 2018, 211(6): W288-296. https://pubmed.ncbi.nlm.nih.gov/30240299/