留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于网络药理学和分子对接分析参附汤治疗房颤的作用机制

施伟华 巢潇莺 苏泳兴 李烁 李晓莉 钟国强

施伟华, 巢潇莺, 苏泳兴, 李烁, 李晓莉, 钟国强. 基于网络药理学和分子对接分析参附汤治疗房颤的作用机制[J]. 中华全科医学, 2022, 20(5): 727-730. doi: 10.16766/j.cnki.issn.1674-4152.002440
引用本文: 施伟华, 巢潇莺, 苏泳兴, 李烁, 李晓莉, 钟国强. 基于网络药理学和分子对接分析参附汤治疗房颤的作用机制[J]. 中华全科医学, 2022, 20(5): 727-730. doi: 10.16766/j.cnki.issn.1674-4152.002440
SHI Wei-hua, CHAO Xiao-ying, SU Yong-xing, LI Shuo, LI Xiao-li, ZHONG Guo-qiang. Mechanism of Shenfu Decoction in the treatment of atrial fibrillation based on network pharmacology and molecular docking[J]. Chinese Journal of General Practice, 2022, 20(5): 727-730. doi: 10.16766/j.cnki.issn.1674-4152.002440
Citation: SHI Wei-hua, CHAO Xiao-ying, SU Yong-xing, LI Shuo, LI Xiao-li, ZHONG Guo-qiang. Mechanism of Shenfu Decoction in the treatment of atrial fibrillation based on network pharmacology and molecular docking[J]. Chinese Journal of General Practice, 2022, 20(5): 727-730. doi: 10.16766/j.cnki.issn.1674-4152.002440

基于网络药理学和分子对接分析参附汤治疗房颤的作用机制

doi: 10.16766/j.cnki.issn.1674-4152.002440
基金项目: 

国家自然科学基金项目 82060068

详细信息
    通讯作者:

    钟国强,E-mail: gq_zhong@126.com

  • 中图分类号: R541.75 R96

Mechanism of Shenfu Decoction in the treatment of atrial fibrillation based on network pharmacology and molecular docking

  • 摘要:   目的  基于网络药理学和分子对接技术,探索参附汤治疗房颤的作用机制。  方法  2020年3—4月通过TCMSP数据库筛选参附汤的活性成分以及相关靶点,并在Uniprot数据库中对相关靶点进行注释并得到基因名;在OMIM和Pharmgkb等数据库,获取房颤相关的靶点;由R软件对房颤及其与参附汤有效成分靶点取交集,获得关键治疗靶点;利用String数据库构建PPI网络,并将结果导入Cytoscape软件中构建“活性成分-作用靶点-疾病”网络和进行拓扑分析,获得核心靶点;随后在DAVID数据库对关键靶点进行GO功能注释及KEGG富集分析,最后通过AutoDock Vina软件对关键成分和核心靶点进行分子对接。  结果  获得参附汤靶点101个,房颤靶点3 219个,交集后获得65个共有靶点,拓扑分析发现NFKBIA、RELA、IL1B、JUN、STAT1、MAPK8是参附汤治疗房颤的核心靶点;GO提示主要靶点涉及电压门控钙通道活性、钙离子传输以及活性氧代谢等生物学过程;KEGG提示主要靶点通过cGMP-PKG、cAMP、钙通道以及PI3K-Akt等信号通路参与治疗房颤;分子对接结果显示核心靶点蛋白与对应参附汤活性成分具有较好的结合稳定性。  结论  参附汤治疗房颤具有“多成分-多靶点-多通路”的作用特点,可能与NFKBIA、RELA、IL1B、JUN、STAT1、MAPK8靶点相关,其具体机制尚需分子生物实验印证。

     

  • 图  1  房颤靶点

    Figure  1.  Atrial fibrillation targets

    图  2  参附汤治疗房颤“有效成分-靶点-疾病”网络

    Figure  2.  Shenfu Decoction for the treatment of atrial fibrillation "active components - targets - diseases" network

    图  3  PPI网络图

    Figure  3.  PPI network diagram

    图  4  GO富集分析分类

    注:BP为biological process,生物过程;MF为molecular function,分子功能;CC为cellular component,细胞组分。

    Figure  4.  GO enrichment analysis classification

    图  5  分子对接图

    注:仅展示结合能 < -7.0 kcal/mol对接图,由左往右分别为NFKBIA与ginsenoside rh2对接图,RELA与kaempferol对接图,JUN与beta-sitosterol对接图。

    Figure  5.  Molecular docking diagram

    表  1  参附汤治疗房颤关键靶点KEGG通路分析

    Table  1.   KEGG pathway analysis of the key target of Shenfu Decoction in treating atrial fibrillation

    ID 通路 数量/个 P
    hsa05417 Lipid and atherosclerosis 24 1.40×10-20
    hsa05200 Pathways in cancer 20 2.64×10-10
    hsa05418 Fluid shear stress and atherosclerosis 16 2.03×10-13
    hsa05167 Kaposi sarcoma-associated herpesvirus infection 15 1.71×10-10
    hsa05164 Influenza A 14 1.63×10-9
    hsa04668 TNF signaling pathway 14 3.04×10-12
    hsa05145 Toxoplasmosis 13 9.09×10-11
    hsa05152 Tuberculosis 13 2.27×10-8
    hsa04933 AGE-RAGE signaling pathway in diabetic complications 13 1.22×10-11
    hsa05145 To×oplasmosis 13 4.38×10-11
    hsa04657 IL-17 signaling pathway 12 9.42×10-11
    hsa05142 Chagas disease 11 1.37×10-8
    hsa04380 Osteoclast differentiation 11 1.26×10-7
    hsa04020 Calcium signaling pathway 11 2.30×10-6
    hsa05222 Small cell lung cancer 11 8.75×10-10
    hsa04022 cGMP-PKG signaling pathway 10 6.66×10-6
    hsa04024 cAMP signaling pathway 10 4.08×10-5
    hsa04620 Toll-like receptor signaling pathway 10 2.30×10-7
    hsa04261 Adrenergic signaling in cardiomyocytes 10 2.17×10-6
    hsa04151 PI3K-Akt signaling pathway 10 2.46×10-5
    下载: 导出CSV

    表  2  关键成分与相应核心靶点分子对接结果

    Table  2.   Docking results of key components with corresponding core target molecules

    成分 靶点 Uniprot ID PDB ID 结合能(kcal/mol)
    kaempferol RELA Q04206 4KV4 -7.6
    STAT1 P42224 1BF5 -6.9
    MAPK8 P45983 4L7F -6.5
    ginsenoside rh2 IL1B P01584 41BI -6.7
    NFKBIA P25963 6Y1J -7.8
    beta-sitosterol JUN P05412 1JNM -7.6
    下载: 导出CSV
  • [1] 黄从新, 张澍, 黄德嘉, 等. 心房颤动: 目前的认识和治疗的建议(2018)[J]. 中国心脏起搏与心电生理杂志, 2018, 32(4): 315-368. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXZ201804002.htm

    HUANG C X, ZHANG S, HUANG D J, et al. Atrial fibrillation: current understanding and treatment suggestions (2018)[J]. Chinese Journal of cardiac pacing and electrophysiology, 2018, 32(4): 315-368. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXZ201804002.htm
    [2] 张湘卓, 李杰, 曾雪芹, 等. 浅析心悸病证论治[J]. 时珍国医国药, 2020, 31(2): 387-389. https://www.cnki.com.cn/Article/CJFDTOTAL-SZGY202002045.htm

    ZHANG X Z, LI J, ZENG X Q, et al. Analysis of the treatment of palpitation syndrome[J]. Shi Zhen, National Medicine, 2020, 31(2): 387-389. https://www.cnki.com.cn/Article/CJFDTOTAL-SZGY202002045.htm
    [3] 史默怡, 陈晓喆, 符德玉. 符德玉教授综合疗法治疗心悸经验[J]. 中西医结合心脑血管病杂志, 2021, 19(5): 866-867. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYY202105043.htm

    SHI M Y, CHEN X Z, FU D Y. Professor Fu Deyu's experience of comprehensive therapy in the treatment of palpitations[J]. Chinese Journal of Integrative Medicine on Cardio-Cerebrovascular Disease, 2021, 19(5): 866-867. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYY202105043.htm
    [4] 李平平, 乔会侠, 李耀辉. 稳心颗粒联合胺碘酮治疗阵发性房颤气阴两虚证的临床效果[J]. 临床医学研究与实践, 2020, 5(35): 152-154. https://www.cnki.com.cn/Article/CJFDTOTAL-YLYS202035056.htm

    LI P P. QIAO H X, LI Y H. Clinical effect of Wenxin Granule Combined with amiodarone in the treatment of Qi Yin deficiency syndrome of paroxysmal atrial fibrillation[J]. Clinical medical research and practice, 2020, 5(35): 152-154. https://www.cnki.com.cn/Article/CJFDTOTAL-YLYS202035056.htm
    [5] 曾雪亮, 李蓓, 曾韬慧, 等. 穿心莲内酯抗心律失常作用及机制研究[J]. 中国医学创新, 2021, 18(15): 7-10. doi: 10.3969/j.issn.1674-4985.2021.15.002

    ZENG X L, LI B, ZENG T H, et al. Study on the antiarrhythmic effect and mechanism of andrographolide[J]. Chinese medical innovation, 2021, 18(15): 7-10. doi: 10.3969/j.issn.1674-4985.2021.15.002
    [6] NI J Y, SHI Y, LI L, et al. Cardioprotection against heart failure by Shenfu injection via TGF-β/Smads signaling pathway[J]. Evid Based Complement Alternat Med, 2017, 2017: 7083016. DOI: 10.1155/2017/7083016.
    [7] 陈伟华, 李吉宗. 参附汤合苓桂术甘汤加减对慢性心力衰竭患者心功能及NT-proBNP的调节[J]. 中医临床研究, 2020, 12(1): 72-74. doi: 10.3969/j.issn.1674-7860.2020.01.025

    CHEN W H, LI J Z, et al. Regulation of Shenfu Decoction and Linggui Zhugan Decoction on cardiac function and NT proBNP in patients with chronic heart failure[J]. Clinical research of traditional Chinese medicine, 2020, 12(1): 72-74. doi: 10.3969/j.issn.1674-7860.2020.01.025
    [8] 黎彩凤, 张丰荣, 祝娜, 等. 彝族药金胃泰胶囊治疗胃肠疾病的网络药理学研究[J]. 中国中药杂志, 2021, 46(4): 865-876. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202104017.htm

    LI C F, ZHANG F R, ZHU N, et al. Network pharmacological study of Yi medicine jinweitai capsule in the treatment of gastrointestinal diseases[J]. Chinese Journal of traditional Chinese medicine, 2021, 46(4): 865-876. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202104017.htm
    [9] ZIMETBAUM P. Atrial Fibrillation[J]. Ann Intern Med, 2017, 166(5): Itc33-Itc48. DOI: 10.7326/AITC201703070.
    [10] 朱静, 徐健, 苏浩, 等. 左心耳封堵治疗非瓣膜性房颤的安全性和有效性[J]. 中华全科医学, 2020, 18(8): 1261-1264. doi: 10.16766/j.cnki.issn.1674-4152.001480

    ZHU J, XU J, SU H, et al. Safety and efficacy of left atrial appendage occlusion in the treatment of nonvalvular atrial fibrillation[J]. Chinese general practice, 2020, 18(8): 1261-1264. doi: 10.16766/j.cnki.issn.1674-4152.001480
    [11] LI J H, GAO M, ZHANG M W, et al. Treatment of atrial fibrillation: A comprehensive review and practice guide[J]. Cardiovasc J Afr, 2020, 31(3): 153-158.
    [12] FAN X H, YU Y Y, LAN H, et al. Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) increases small-conductance Ca2+-activated K+ current in patients with chronic atrial fibrillation[J]. Med Sci Monit, 2018, 24: 3011-3023. DOI: 10.12659/MSM.909684.
    [13] CSEPE T A, HANSEN B J, FEDOROV V V. Atrial fibrillation driver mechanisms: Insight from the isolated human heart[J]. Trends Cardiovasc Med, 2017, 27(1): 1-11. doi: 10.1016/j.tcm.2016.05.008
    [14] MASON F E, PRONTO J R D, ALHUSSINI K, et al. Cellular and mitochondrial mechanisms of atrial fibrillation[J]. Basic Res Cardiol, 2020, 115(6): 72. doi: 10.1007/s00395-020-00827-7
    [15] NATTEL S, HEIJMAN J, ZHOU L P, et al. Molecular basis of atrial fibrillation pathophysiology and therapy: A translational perspective[J]. Circ Res, 2020, 127(1): 51-72. doi: 10.1161/CIRCRESAHA.120.316363
    [16] WIJESURENDRA R S, CASADEI B. Mechanisms of atrial fibrillation[J]. Heart, 2019, 105(24): 1860-1867. doi: 10.1136/heartjnl-2018-314267
    [17] RAHM A K, GRAMLICH D, WIEDER T, et al. Trigger-specific remodeling of K(Ca)2 potassium channels in models of atrial fibrillation[J]. Pharmgenomics Pers Med, 2021, 14: 579-590. DOI: 10.2147/PGPM.S290291.
    [18] NAKAMURA T, TSUJITA K. Current trends and future perspectives for heart failure treatment leveraging cGMP modifiers and the practical effector PKG[J]. J Cardiol, 2021, 78(4): 261-268. doi: 10.1016/j.jjcc.2021.03.004
    [19] CHAO Y C, SURDO N C, PANTANO S, et al. Imaging cAMP nanodomains in the heart[J]. Biochem Soc Trans, 2019, 47(5): 1383-1392.
    [20] EZEANI M, PRABHU S. Pathophysiology and therapeutic relevance of PI3K (p110α) protein in atrial fibrillation: A non-interventional molecular therapy strategy[J]. Pharmacol Res, 2021, 165: 105415. DOI: 10.1016/j.phrs.2020.105415.
    [21] XUE X F, LING X Y, XI W, et al. Exogenous hydrogen sulfide reduces atrial remodeling and atrial fibrillation induced by diabetes mellitus via activation of the PI3K/Akt/eNOS pathway[J]. Mol Med Rep, 2020, 22(3): 1759-1766. doi: 10.3892/mmr.2020.11291
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  389
  • HTML全文浏览量:  161
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-19
  • 网络出版日期:  2022-09-05

目录

    /

    返回文章
    返回