Mechanism of Shenfu Decoction in the treatment of atrial fibrillation based on network pharmacology and molecular docking
-
摘要:
目的 基于网络药理学和分子对接技术,探索参附汤治疗房颤的作用机制。 方法 2020年3—4月通过TCMSP数据库筛选参附汤的活性成分以及相关靶点,并在Uniprot数据库中对相关靶点进行注释并得到基因名;在OMIM和Pharmgkb等数据库,获取房颤相关的靶点;由R软件对房颤及其与参附汤有效成分靶点取交集,获得关键治疗靶点;利用String数据库构建PPI网络,并将结果导入Cytoscape软件中构建“活性成分-作用靶点-疾病”网络和进行拓扑分析,获得核心靶点;随后在DAVID数据库对关键靶点进行GO功能注释及KEGG富集分析,最后通过AutoDock Vina软件对关键成分和核心靶点进行分子对接。 结果 获得参附汤靶点101个,房颤靶点3 219个,交集后获得65个共有靶点,拓扑分析发现NFKBIA、RELA、IL1B、JUN、STAT1、MAPK8是参附汤治疗房颤的核心靶点;GO提示主要靶点涉及电压门控钙通道活性、钙离子传输以及活性氧代谢等生物学过程;KEGG提示主要靶点通过cGMP-PKG、cAMP、钙通道以及PI3K-Akt等信号通路参与治疗房颤;分子对接结果显示核心靶点蛋白与对应参附汤活性成分具有较好的结合稳定性。 结论 参附汤治疗房颤具有“多成分-多靶点-多通路”的作用特点,可能与NFKBIA、RELA、IL1B、JUN、STAT1、MAPK8靶点相关,其具体机制尚需分子生物实验印证。 Abstract:Objective To explore the mechanism of Shenfu Decoction in the treatment of atrial fibrillation by network pharmacology and molecular docking technology. Methods The main active ingredients of Shenfu Decoction were screened by the TCMSP database, and the related targets were annotated by the Uniprot database and gene names were obtained. The targets of atrial fibrillation were obtained from the OMIM and Pharmgkb Databases. R software was used to determine the intersection of atrial fibrillation and the active ingredient targets of Shenfu Decoction, and the therapeutic targets were obtained. The PPI network was constructed by using the online String database, and the results were imported into Cytoscape software to construct the "active ingredient-target-disease" network and perform topology analysis to obtain the core targets. The GO and KEGG enrichment analyses of key targets in the DAVID database were carried out, and AutoDock Vina software was applied to conduct molecular docking of key components and key targets. Results The 101 targets of Shenfu Decoction and 3 219 targets of atrial fibrillation were obtained, and 65 common targets were obtained after the intersection. Topology analysis showed that NFKBIA, RELA, IL1B, JUN, STAT1 and MAPK8 might be the core targets of Shenfu Decoction in treating AF. GO suggested that the targets involved biological processes such as voltage-gated calcium channel activity, calcium ion transport and reactive oxygen metabolism. KEGG suggested that the targets were involved in the treatment of atrial fibrillation through cGMP-PKG, cAMP, calcium channel and PI3K-Akt signalling pathways. The results of molecular docking showed that the core target protein had good binding stability with the corresponding active components. Conclusion The treatment of atrial fibrillation with Shenfu Decoction has the characteristics of "multi-component, multi-target and multi-pathway", which may be related to targets of NFKBIA, RELA, IL1B, JUN, STAT1 and MAPK8. The specific mechanisms may need to be confirmed by molecular biological experiments. -
Key words:
- Shenfu Decoction /
- Atrial fibrillation /
- Mechanism /
- Network pharmacology /
- Molecular docking
-
表 1 参附汤治疗房颤关键靶点KEGG通路分析
Table 1. KEGG pathway analysis of the key target of Shenfu Decoction in treating atrial fibrillation
ID 通路 数量/个 P值 hsa05417 Lipid and atherosclerosis 24 1.40×10-20 hsa05200 Pathways in cancer 20 2.64×10-10 hsa05418 Fluid shear stress and atherosclerosis 16 2.03×10-13 hsa05167 Kaposi sarcoma-associated herpesvirus infection 15 1.71×10-10 hsa05164 Influenza A 14 1.63×10-9 hsa04668 TNF signaling pathway 14 3.04×10-12 hsa05145 Toxoplasmosis 13 9.09×10-11 hsa05152 Tuberculosis 13 2.27×10-8 hsa04933 AGE-RAGE signaling pathway in diabetic complications 13 1.22×10-11 hsa05145 To×oplasmosis 13 4.38×10-11 hsa04657 IL-17 signaling pathway 12 9.42×10-11 hsa05142 Chagas disease 11 1.37×10-8 hsa04380 Osteoclast differentiation 11 1.26×10-7 hsa04020 Calcium signaling pathway 11 2.30×10-6 hsa05222 Small cell lung cancer 11 8.75×10-10 hsa04022 cGMP-PKG signaling pathway 10 6.66×10-6 hsa04024 cAMP signaling pathway 10 4.08×10-5 hsa04620 Toll-like receptor signaling pathway 10 2.30×10-7 hsa04261 Adrenergic signaling in cardiomyocytes 10 2.17×10-6 hsa04151 PI3K-Akt signaling pathway 10 2.46×10-5 表 2 关键成分与相应核心靶点分子对接结果
Table 2. Docking results of key components with corresponding core target molecules
成分 靶点 Uniprot ID PDB ID 结合能(kcal/mol) kaempferol RELA Q04206 4KV4 -7.6 STAT1 P42224 1BF5 -6.9 MAPK8 P45983 4L7F -6.5 ginsenoside rh2 IL1B P01584 41BI -6.7 NFKBIA P25963 6Y1J -7.8 beta-sitosterol JUN P05412 1JNM -7.6 -
[1] 黄从新, 张澍, 黄德嘉, 等. 心房颤动: 目前的认识和治疗的建议(2018)[J]. 中国心脏起搏与心电生理杂志, 2018, 32(4): 315-368. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXZ201804002.htmHUANG C X, ZHANG S, HUANG D J, et al. Atrial fibrillation: current understanding and treatment suggestions (2018)[J]. Chinese Journal of cardiac pacing and electrophysiology, 2018, 32(4): 315-368. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXZ201804002.htm [2] 张湘卓, 李杰, 曾雪芹, 等. 浅析心悸病证论治[J]. 时珍国医国药, 2020, 31(2): 387-389. https://www.cnki.com.cn/Article/CJFDTOTAL-SZGY202002045.htmZHANG X Z, LI J, ZENG X Q, et al. Analysis of the treatment of palpitation syndrome[J]. Shi Zhen, National Medicine, 2020, 31(2): 387-389. https://www.cnki.com.cn/Article/CJFDTOTAL-SZGY202002045.htm [3] 史默怡, 陈晓喆, 符德玉. 符德玉教授综合疗法治疗心悸经验[J]. 中西医结合心脑血管病杂志, 2021, 19(5): 866-867. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYY202105043.htmSHI M Y, CHEN X Z, FU D Y. Professor Fu Deyu's experience of comprehensive therapy in the treatment of palpitations[J]. Chinese Journal of Integrative Medicine on Cardio-Cerebrovascular Disease, 2021, 19(5): 866-867. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYY202105043.htm [4] 李平平, 乔会侠, 李耀辉. 稳心颗粒联合胺碘酮治疗阵发性房颤气阴两虚证的临床效果[J]. 临床医学研究与实践, 2020, 5(35): 152-154. https://www.cnki.com.cn/Article/CJFDTOTAL-YLYS202035056.htmLI P P. QIAO H X, LI Y H. Clinical effect of Wenxin Granule Combined with amiodarone in the treatment of Qi Yin deficiency syndrome of paroxysmal atrial fibrillation[J]. Clinical medical research and practice, 2020, 5(35): 152-154. https://www.cnki.com.cn/Article/CJFDTOTAL-YLYS202035056.htm [5] 曾雪亮, 李蓓, 曾韬慧, 等. 穿心莲内酯抗心律失常作用及机制研究[J]. 中国医学创新, 2021, 18(15): 7-10. doi: 10.3969/j.issn.1674-4985.2021.15.002ZENG X L, LI B, ZENG T H, et al. Study on the antiarrhythmic effect and mechanism of andrographolide[J]. Chinese medical innovation, 2021, 18(15): 7-10. doi: 10.3969/j.issn.1674-4985.2021.15.002 [6] NI J Y, SHI Y, LI L, et al. Cardioprotection against heart failure by Shenfu injection via TGF-β/Smads signaling pathway[J]. Evid Based Complement Alternat Med, 2017, 2017: 7083016. DOI: 10.1155/2017/7083016. [7] 陈伟华, 李吉宗. 参附汤合苓桂术甘汤加减对慢性心力衰竭患者心功能及NT-proBNP的调节[J]. 中医临床研究, 2020, 12(1): 72-74. doi: 10.3969/j.issn.1674-7860.2020.01.025CHEN W H, LI J Z, et al. Regulation of Shenfu Decoction and Linggui Zhugan Decoction on cardiac function and NT proBNP in patients with chronic heart failure[J]. Clinical research of traditional Chinese medicine, 2020, 12(1): 72-74. doi: 10.3969/j.issn.1674-7860.2020.01.025 [8] 黎彩凤, 张丰荣, 祝娜, 等. 彝族药金胃泰胶囊治疗胃肠疾病的网络药理学研究[J]. 中国中药杂志, 2021, 46(4): 865-876. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202104017.htmLI C F, ZHANG F R, ZHU N, et al. Network pharmacological study of Yi medicine jinweitai capsule in the treatment of gastrointestinal diseases[J]. Chinese Journal of traditional Chinese medicine, 2021, 46(4): 865-876. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202104017.htm [9] ZIMETBAUM P. Atrial Fibrillation[J]. Ann Intern Med, 2017, 166(5): Itc33-Itc48. DOI: 10.7326/AITC201703070. [10] 朱静, 徐健, 苏浩, 等. 左心耳封堵治疗非瓣膜性房颤的安全性和有效性[J]. 中华全科医学, 2020, 18(8): 1261-1264. doi: 10.16766/j.cnki.issn.1674-4152.001480ZHU J, XU J, SU H, et al. Safety and efficacy of left atrial appendage occlusion in the treatment of nonvalvular atrial fibrillation[J]. Chinese general practice, 2020, 18(8): 1261-1264. doi: 10.16766/j.cnki.issn.1674-4152.001480 [11] LI J H, GAO M, ZHANG M W, et al. Treatment of atrial fibrillation: A comprehensive review and practice guide[J]. Cardiovasc J Afr, 2020, 31(3): 153-158. [12] FAN X H, YU Y Y, LAN H, et al. Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) increases small-conductance Ca2+-activated K+ current in patients with chronic atrial fibrillation[J]. Med Sci Monit, 2018, 24: 3011-3023. DOI: 10.12659/MSM.909684. [13] CSEPE T A, HANSEN B J, FEDOROV V V. Atrial fibrillation driver mechanisms: Insight from the isolated human heart[J]. Trends Cardiovasc Med, 2017, 27(1): 1-11. doi: 10.1016/j.tcm.2016.05.008 [14] MASON F E, PRONTO J R D, ALHUSSINI K, et al. Cellular and mitochondrial mechanisms of atrial fibrillation[J]. Basic Res Cardiol, 2020, 115(6): 72. doi: 10.1007/s00395-020-00827-7 [15] NATTEL S, HEIJMAN J, ZHOU L P, et al. Molecular basis of atrial fibrillation pathophysiology and therapy: A translational perspective[J]. Circ Res, 2020, 127(1): 51-72. doi: 10.1161/CIRCRESAHA.120.316363 [16] WIJESURENDRA R S, CASADEI B. Mechanisms of atrial fibrillation[J]. Heart, 2019, 105(24): 1860-1867. doi: 10.1136/heartjnl-2018-314267 [17] RAHM A K, GRAMLICH D, WIEDER T, et al. Trigger-specific remodeling of K(Ca)2 potassium channels in models of atrial fibrillation[J]. Pharmgenomics Pers Med, 2021, 14: 579-590. DOI: 10.2147/PGPM.S290291. [18] NAKAMURA T, TSUJITA K. Current trends and future perspectives for heart failure treatment leveraging cGMP modifiers and the practical effector PKG[J]. J Cardiol, 2021, 78(4): 261-268. doi: 10.1016/j.jjcc.2021.03.004 [19] CHAO Y C, SURDO N C, PANTANO S, et al. Imaging cAMP nanodomains in the heart[J]. Biochem Soc Trans, 2019, 47(5): 1383-1392. [20] EZEANI M, PRABHU S. Pathophysiology and therapeutic relevance of PI3K (p110α) protein in atrial fibrillation: A non-interventional molecular therapy strategy[J]. Pharmacol Res, 2021, 165: 105415. DOI: 10.1016/j.phrs.2020.105415. [21] XUE X F, LING X Y, XI W, et al. Exogenous hydrogen sulfide reduces atrial remodeling and atrial fibrillation induced by diabetes mellitus via activation of the PI3K/Akt/eNOS pathway[J]. Mol Med Rep, 2020, 22(3): 1759-1766. doi: 10.3892/mmr.2020.11291