Research progress of respiratory microbiota and lung disease in neonates
-
摘要: 新生儿时期是微生物菌群与宿主间建立稳定生理功能的关键时期,此期间呼吸道菌群数量经历由少到多的变化,种类也由单一向多样化转变。新生儿呼吸道微生物的揭示得益于标本采集技术及微生态监测技术的进步,打破了原有的技术“壁垒”,标本提取技术的进步和检测技术准确度的提高增加了微生态研究的可信度,为临床研究提供了极大的方便。新生儿期呼吸道中莫拉菌属、棒状杆菌属及狡诈菌属等有益菌属丰度降低,潜在致病菌如铜绿假单胞菌、流感嗜血杆菌及金黄色葡萄球菌比例增多,菌群多样性的改变,与支气管肺发育不良、哮喘、囊性纤维化和肺炎等呼吸系统疾病的发生、发展密切相关。同时,新生儿呼吸道菌群的建立和演变又受分娩方式、喂养方式、抗菌药物使用及胎龄、出生日龄等多方面因素的调控。从微生物角度进行研究,可明确呼吸道微生物菌群在新生儿呼吸道疾病中的作用机制,为疾病的预防及治疗开辟一个崭新的视角,为精准治疗打下基础。本文对新生儿呼吸道微生物菌群的影响因素和肠道菌群的联系及其与呼吸道疾病的关系进行综述。Abstract: The neonatal period is the key period for the establishment of stable physiological function between the microbiota and the host. During this period, the number of respiratory microbiota increases, and the species changes from single to diversified. Progress in neonatal respiratory tract specimen collection technology and microecological monitoring technology has broken the original technical "barrier". The progress in specimen extraction technology and improved detection technology accuracy have increased the credibility of microecological research and offered convenience for clinical research. In the neonatal respiratory tract, the decreased abundance of beneficial bacteria, such as Moraxella, Corynebacterium and Dolosigranulum, the increased proportion of potential pathogenic bacteria, such as Pseudomonas aeruginosa, Haemophilus influenzae and Staphylococcus aureus, and the change in bacterial diversity were closely related to the occurrence and development of respiratory diseases, such as bronchopulmonary dysplasia, asthma, cystic fibrosis and pneumonia. The establishment and evolution of neonatal respiratory flora are regulated by many factors, such as delivery mode, feeding mode, use of antibiotics, gestational age, birth date and age. Research from the perspective of microorganisms can clarify the action mechanism of respiratory microorganisms in neonatal respiratory diseases, open up a new perspective for disease prevention and treatment and achieve the purpose of accurate treatment. This paper reviews the influencing factors of neonatal respiratory tract microbiota, the relationship between intestinal microbiota and respiratory diseases.
-
Key words:
- Microbiota /
- Respiratory tract /
- Neonate
-
[1] BIESBROEK G, TSIVTSIVADZE E, SANDERS E A, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children[J]. Am J Respir Crit Care Med, 2014, 190(11): 1283-1292. doi: 10.1164/rccm.201407-1240OC [2] KORPELA K. Impact of delivery mode on infant gut microbiota[J]. Ann Nutr Metab, 2021, 77(3): 11-19. [3] UBEROS J. Perinatal microbiota: Review of its importance in newborn health[J]. Arch Argent Pediatr, 2020, 118(3): e265-e270. [4] DONG T S, GUPTA A. Influence of early life, diet, and the environment on the microbiome[J]. Clin Gastroenterol Hepatol, 2019, 17(2): 231-242. doi: 10.1016/j.cgh.2018.08.067 [5] NEAL E, NGUYEN C, RATU F T, et al. A comparison of pneumococcal nasopharyngeal carriage in very young Fijian infants born by vaginal or cesarean delivery[J]. JAMA Netw Open, 2019, 2(10): e1913650. DOI: 10.1001/jamanetworkopen.2019.13650. [6] CARDELLI E, CALVIGIONI M, VECCHIONE A, et al. Delivery mode shapes the composition of the lower airways microbiota in newborns[J]. Front Cell Infect Microbiol, 2021: 1342. DOI: 10.3389/fcimb.2021.808390. [7] KALBERMATTER C, FERNANDEZ T N, CHRISTENSEN S, et al. Maternal microbiota, early life colonization and breast milk drive immune development in the newborn[J]. Front Immunol, 2021, 12: 1768. DOI: 10.3389/fimmu.2021.683022. [8] SCHLOSSER-BRANDENBURG J, EBNER F, KLOPFLEISCH R, et al. Influence of nutrition and maternal bonding on postnatal lung development in the newborn pig[J]. Front Immunol, 2021: 3144. DOI: 10.3389/fimmu.2021.734153. [9] BOSCH A, DE STEENHUIJSEN P W, VAN HOUTEN M A, et al. Maturation of the infant respiratory microbiota, environmental drivers, and health consequences. A prospective cohort study[J]. Am J Respir Crit Care Med, 2017, 196(12): 1582-1590. doi: 10.1164/rccm.201703-0554OC [10] FERRER M, MENDEZ-GARCIA C, ROJO D, et al. Antibiotic use and microbiome function[J]. Biochem Pharmacol, 2017, 134: 114-126. doi: 10.1016/j.bcp.2016.09.007 [11] 侯齐书, 叶继锋, 林小君. 382例新生儿肺炎病原菌分布及耐药性分析[J]. 中国消毒学杂志, 2018, 35(7): 548-550. doi: 10.11726/j.issn.1001-7658.2018.07.023HOU Q S, YE J F, LIN X J. Distribution and drug resistance of pathogens in 382 cases of neonatal pneumonia[J]. Chin J Disinfect, 2018, 35(7): 548-550. doi: 10.11726/j.issn.1001-7658.2018.07.023 [12] HU Q, DAI W K, ZHOU Q, et al. Dynamic oropharyngeal and faecal microbiota during treatment in infants hospitalized for bronchiolitis compared with age-matched healthy subjects[J]. Sci Rep, 2017, 7(1): 11266. doi: 10.1038/s41598-017-11311-z [13] 洪慧慧, 王立波, 祁媛媛. 基于16S rDNA可变区测序技术对抗生素治疗后的6月龄内肺炎婴儿的呼吸道菌群现况调查[J]. 中国循证儿科杂志, 2018, 13(1): 45-49. doi: 10.3969/j.issn.1673-5501.2018.01.006HONG H H, WANG L B, QI Y Y. The respiratory bacteria microbiota of infants with pneumonia less than 6 months old[J]. Chin J Evid Based Pediatr, 2018, 13(1): 45-49. doi: 10.3969/j.issn.1673-5501.2018.01.006 [14] TOIVONEN L, SCHUEZ-HAVUPALO L, KARPPINEN S, et al. Antibiotic treatments during infancy, changes in nasal microbiota, and asthma development: Population-based cohort study[J]. Clin Infect Dis, 2021, 72(9): 1546-1554. doi: 10.1093/cid/ciaa262 [15] TOIVONEN L, HASEGAWA K, WARIS M, et al. Early nasal microbiota and acute respiratory infections during the first years of life[J]. Thorax, 2019, 74(6): 592-599. doi: 10.1136/thoraxjnl-2018-212629 [16] KOBESHAVIDZE N, CHIKVILADZE D, GACHECHILADZE K, et al. The microbial structure of the mucous membrane of the respiratory tract in premature infants[J]. Georgian Med News, 2019(288): 131-135. [17] 李伟然, 汪志凌, 万朝敏. 肠道菌群与"肠-肺"轴之间的关系[J]. 中华实用儿科临床杂志, 2017, 32(7): 548-551. doi: 10.3760/cma.j.issn.2095-428X.2017.07.019LI W R, WANG Z L, WAN Z M. Interaction between gut microbiota and "gut-lung" axis[J]. Chin J Appl Clin Pediatr, 2017, 32(7): 548-551. doi: 10.3760/cma.j.issn.2095-428X.2017.07.019 [18] 李文龙, 李慧君, 张丰泉, 等. 肠道菌群与肺部疾病相关性研究进展[J]. 实用医学杂志, 2019, 35(14): 2195-2199. doi: 10.3969/j.issn.1006-5725.2019.14.001LI W L, LI H J, ZHANG F Q, et al. Advance of the relationship between gut microbiota and lung diseases[J]. The J Pract Med, 2019, 35(14): 2195-2199. doi: 10.3969/j.issn.1006-5725.2019.14.001 [19] 彭倩, 曲书强. 肺微生物群落对早产儿肺发育影响的研究进展[J]. 中国儿童保健杂志, 2021, 29(3): 289-291. https://www.cnki.com.cn/Article/CJFDTOTAL-ERTO202103015.htmPENG Q, QU S Q. Research progress on the effects of pulmonary microbiota on the lung development of premature infants[J]. Chin J Child Health Care, 2021, 29(3): 289-291. https://www.cnki.com.cn/Article/CJFDTOTAL-ERTO202103015.htm [20] 陈益民, 沙建平, 刘社兰, 等. 肠道和呼吸道菌群与肺部疾病的研究新进展[J]. 中国微生态学杂志, 2017, 29(10): 1234-1240.CHEN Y M, SHA J P, LIU S L, et al. Correlation of gut microbiota and respiratory microbiota with lung diseases: Research progress[J]. Chin J Microecol, 2017, 29(10): 1234-1240. [21] FRATI F, SALVATORI C, INCORVAIA C, et al. The role of the microbiome in asthma: The gut(-)lung axis[J]. Int J Mol Sci, 2018, 20(1): 123. doi: 10.3390/ijms20010123 [22] MCALEER J P, KOLLS J K. Contributions of the intestinal microbiome in lung immunity[J]. Eur J Immunol, 2018, 48(1): 39-49. doi: 10.1002/eji.201646721 [23] PIERSIGILLI F, VAN GRAMBEZEN B, HOCQ C, et al. Nutrients and microbiota in lung diseases of prematurity: The placenta-gut-lung triangle[J]. Nutrients, 2020, 12(2): 469. doi: 10.3390/nu12020469 [24] FROMENTIN M, RICARD J D, ROUX D. Respiratory microbiome in mechanically ventilated patients: A narrative review[J]. Intensive Care Med, 2021, 47(3): 292-306. doi: 10.1007/s00134-020-06338-2 [25] RYAN F J, DREW D P, DOUGLAS C, et al. Changes in the composition of the gut microbiota and the blood transcriptome in preterm infants at less than 29 weeks gestation diagnosed with bronchopulmonary dysplasia[J]. Msystems, 2019, 4(5): e00484-19. DOI: 10.1128/mSystems.00484-19. [26] DICKSON R P, SINGER B H, NEWSTEAD M W, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome[J]. Nat Microbiol, 2016, 1(10): 16113. DOI: 10.1038/nmicrobiol.2016.113. [27] PAMMI M, LAL C V, WAGNER B D, et al. Airway microbiome and development of bronchopulmonary dysplasia in preterm infants: A systematic review[J]. J Pediatr, 2019, 204: 126-133. doi: 10.1016/j.jpeds.2018.08.042 [28] IMAMURA T, SATO M, GO H, et al. The microbiome of the lower respiratory tract in premature infants with and without severe bronchopulmonary dysplasia[J]. Am J Perinatol, 2017, 34(1): 80-87. [29] GAO X Y, DAI Y H, FAN D Z, et al. The association between the microbes in the tracheobronchial aspirate fluid and bronchopulmonary dysplasia in preterm infants[J]. Pediatr Neonatol, 2020, 61(3): 306-310. doi: 10.1016/j.pedneo.2019.12.010 [30] BREWER M R, MAFFEI D, CERISE J, et al. Determinants of the lung microbiome in intubated premature infants at risk for bronchopulmonary dysplasia[J]. J Matern Fetal Neonatal Med, 2021, 34(19): 3220-3226. doi: 10.1080/14767058.2019.1681961 [31] LAL C V, KANDASAMY J, DOLMA K, et al. Early airway microbial metagenomic and metabolomic signatures are associated with development of severe bronchopulmonary dysplasia[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 315(5): L810-L815. doi: 10.1152/ajplung.00085.2018 [32] WAGNER B D, SONTAG M K, HARRIS J K, et al. Airway microbial community turnover differs by bpd severity in ventilated preterm infants[J]. PLoS One, 2017, 12(1): e170120. [33] CHUN J, CHUN S H, HAN Y S, et al. Different degrees of maternal ureaplasma colonization and its correlation with bronchopulmonary dysplasia in < 32 weeks' preterm infants[J]. Pediatr Neonatol, 2019, 60(4): 441-446. doi: 10.1016/j.pedneo.2018.11.004 [34] TRAMPER J, ZHANG H, FOGLIA E E, et al. The association between positive tracheal aspirate cultures and adverse pulmonary outcomes in preterm infants with severe bronchopulmonary dysplasia[J]. Am J Perinatol, 2017, 34(1): 96-104. [35] ZHANG X Y, ZHANG X, ZHANG N, et al. Airway microbiome, host immune response and recurrent wheezing in infants with severe respiratory syncytial virus bronchiolitis[J]. Pediatr Allergy Immunol, 2020, 31(3): 281-289. [36] 彭万胜, 吕平, 董淮富. 重组IL-35-BCG新生儿期接种对实验性哮喘模型Tregs及Th17的影响[J]. 中华全科医学, 2019, 17(9): 1454-1457, 1462. doi: 10.16766/j.cnki.issn.1674-4152.000968PENG W S, LYU P, DONG H F. Effects of recombinant IL-35-BCG neonatal inoculation on Tregs/Th17 balance in experimental asthma model[J]. Chin J Gen Pract, 2019, 17(9): 1454-1457, 1462. doi: 10.16766/j.cnki.issn.1674-4152.000968 [37] FINK N R, CHAWES B L, THORSEN J, et al. Neonates colonized with pathogenic bacteria in the airways have a low-grade systemic inflammation[J]. Allergy, 2018, 73(11): 2150-2159. [38] THORSEN J, RASMUSSEN M A, WAAGE J, et al. Infant airway microbiota and topical immune perturbations in the origins of childhood asthma[J]. Nat Commun, 2019, 10(1): 5001. [39] TAY C, TA L, OW Y Y, et al. Role of upper respiratory microbiota and virome in childhood rhinitis and wheeze: Collegium internationale allergologicum update 2021[J]. Int Arch Allergy Immunol, 2021, 182(4): 265-276. [40] TANG H H H F, LANG A, TEO S M, et al. Developmental patterns in the nasopharyngeal microbiome during infancy are associated with asthma risk[J]. J Allergy Clin Immunol, 2021, 147(5): 1683-1691. [41] PREVAES S M, DE WINTER-DE G K, JANSSENS H M, et al. Development of the nasopharyngeal microbiota in infants with cystic fibrosis[J]. Am J Respir Crit Care Med, 2016, 193(5): 504-515. [42] FRAYMAN K B, WYLIE K M, ARMSTRONG D S, et al. Differences in the lower airway microbiota of infants with and without cystic fibrosis[J]. J Cyst Fibros, 2019, 18(5): 646-652. [43] LUYT C E, BOUADMA L, MORRIS A C, et al. Pulmonary infections complicating ARDS[J]. Intensive Care Med, 2020, 46(12): 2168-2183. [44] MAN W H, CLERC M, DE STEENHUIJSEN P W, et al. Loss of microbial topography between oral and nasopharyngeal microbiota and development of respiratory infections early in life[J]. Am J Respir Crit Care Med, 2019, 200(6): 760-770. [45] KELLY M S, SURETTE M G, SMIEJA M, et al. Pneumococcal colonization and the nasopharyngeal microbiota of children in Botswana[J]. Pediatr Infect Dis J, 2018, 37(11): 1176-1183. [46] 刘书磊, 吴娥玲, 崔云云, 等. 新生儿院内获得性肺炎患者病原体特征及危险因素分析[J]. 中国微生态学杂志, 2019, 31(4): 449-452. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWS201904018.htmLIU S L, WU E L, CUI Y Y, et al. Analysis of pathogens, drug sensitivity and risk factors of hospital-acquired pneumonia in neonates[J]. Chin J Microecol, 2019, 31(4): 449-452. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWS201904018.htm [47] 赵晓红, 罗广立, 杨娟. 气管抽吸标本微生物检测在预测新生儿呼吸机相关性肺炎预后中的应用[J]. 中国微生态学杂志, 2018, 30(10): 1196-1199. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWS201810022.htmZHAO X H, LUO G L, YANG J. Microbiological detection of tracheal aspiration specimen in prediction of prognosis of neonatal ventilator-associated pneumonia[J]. Chin J Microecol, 2018, 30(10): 1196-1199. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWS201810022.htm [48] 党晓平, 胡小剑, 郑玲芳. 新生儿呼吸机相关性肺炎气管导管尖端生物膜菌群分析及其临床意义[J]. 临床肺科杂志, 2021, 26(12): 1829-1833. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFK202112010.htmDANG X P, HU X J, ZHENG L F. Analysis of biofilm flora at tracheal tube tip in neonates with ventilator-associated pneumonia and its clinical significance[J]. J Clin Pulm Med, 2021, 26(12): 1829-1833. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFK202112010.htm [49] TUSOR N, DE CUNTO A, BASMA Y, et al. Ventilator-associated pneumonia in neonates: The role of point of care lung ultrasound[J]. Eur J Pediatr, 2021, 180(1): 137-146. [50] PAN Y, SONG S J, TANG X L, et al. Streptococcus sp. in neonatal endotracheal tube biofilms is associated with ventilator-associated pneumonia and enhanced biofilm formation of Pseudomonas aeruginosa PAO1[J]. Sci Rep, 2017, 7(1): 3423.
点击查看大图
计量
- 文章访问数: 363
- HTML全文浏览量: 213
- PDF下载量: 16
- 被引次数: 0