CD38 influences Treg/Th17 balance to promote rheumatoid arthritis
-
摘要:
目的 检测类风湿关节炎(RA)小鼠模型组织中分化簇38(CD38)的表达和CD4+T细胞中调节性T细胞(Tregs)与辅助性T细胞17(Th17)的比例,探讨CD38促进RA发生发展的机制。 方法 构建胶原诱导小鼠关节炎模型(CIA),每组3只,通过蛋白免疫印迹、荧光定量PCR检测滑膜组织、脾脏、淋巴结中CD38蛋白、mRNA的表达;采用流式细胞术分析Th17细胞和Treg细胞的比例;从小鼠脾脏分离出幼稚CD4+T细胞,分化后,检测CD38蛋白的表达,计算Th17细胞和Treg细胞的比例;极化幼稚CD4+T细胞,检测PI3K、AKT、p-AKT、mTOR、p-mTOR的蛋白表达,分析CD38对PI3K/AKT/mTOR信号通路的影响。 结果 CIA中各滑膜组织、脾脏、淋巴结中CD38蛋白表达高于对照组,差异均有统计学意义(P<0.01);与极化组+sh-NC相比,极化组+sh-CD38的Th17细胞比例降低,Treg细胞比例升高(P<0.01);p-AKT、p-mTOR蛋白表达量在极化组+sh-NC(3.00±0.08、3.18±0.12)均高于极化组+sh-CD38(2.48±0.09、1.70±0.10,P<0.01)。 结论 CD38在CIA中高表达,抑制CD38的表达CIA炎症得到改善;在特定分化条件下,CD38高表达使得Th17细胞比例升高,Treg细胞比例下降;经极化处理,CD38能通过PI3K/AKT/mTOR信号通路影响Treg/Th17平衡促进类风湿关节炎炎症的发生发展。 -
关键词:
- 分化簇38 /
- 信号通路 /
- 调节性T细胞/辅助性T细胞17平衡 /
- 类风湿关节炎
Abstract:Objective To detect the expression of cluster of differentiation 38 (CD38) and the ratio of regulatory T cells (Tregs) to helper T cells 17 (Th17) among CD4+ T cells in the tissues of rheumatoid arthritis (RA) mouse model, and to explore the mechanism by which CD38 in promoting the development of rheumatoid arthritis. Methods The collagen-induced mice arthritis model (CIA) were constructed to detect CD38 protein and mRNA expression in synovial tissue, spleen, and lymph nodes by protein immunoblotting and fluorescent quantitative PCR. The ratio of Th17 cells and Treg cells were analyzed by flow cytometry. After differentiation, naive CD4+ T cells isolated from the spleen of mice were tested for CD38 protein expression and the ratio of Th17 cells to Treg cells was calculated; By polarizing naive CD4+ T cells, the protein expression of PI3K, AKT, p-AKT, mTOR, p-mTOR were detected and the effect of CD38 on PI3K/AKT/ mTOR signaling pathway were analyzed. Results CD38 protein expression in synovial tissue, spleen, and lymph nodes in CIA were higher than that in the control group, and the differences were statistically significant (P < 0.01). The percentage of naive CD4+ T cells in specific differentiation conditions, compared with the polarized group+sh-NC, the proportion of Th17 cells in the polarized group+sh-CD38 was decreased, and the proportion of Treg cells was increased (P < 0.01). After the polarization treatment of CD4+ T cells, the expression of p-AKT and p-mTOR proteins in the polarized group+sh-NC (3.00±0.08, 3.18±0.12) were higher than that in polarized group+sh-CD38 (2.48±0.09, 1.70±0.10, P < 0.01). Conclusion CD38 is highly expressed in CIA, and inhibition of CD38 expression improves CIA inflammation. Under specific differentiation conditions, high CD38 expression increases the proportion of Th17 cells and decreases the proportion of Treg cells. Through polarization, CD38 affects the balance between Treg and Th17 through the PI3K/AKT/mTOR signaling pathway to promote the development of rheumatoid arthritis inflammation. -
表 1 类风湿关节炎小鼠模型不同组织中CD38蛋白的表达水平(x±s)
Table 1. Expression levels of CD38 protein in different tissues of rheumatoid arthritis mice model(x±s)
组别 只数 关节滑膜 脾脏 淋巴结 对照组 3 0.50±0.03 0.71±0.05 0.78±0.03 模型组 3 0.73±0.04a 1.09±0.05a 1.26±0.07a 模型组+sh-NC 3 0.70±0.02 1.11±0.08 1.23±0.03 模型组+sh-CD38 3 0.32±0.03b 0.51±0.03b 0.60±0.03b F值 70.865 52.841 123.364 P值 <0.001 <0.001 <0.001 注:与对照组比较,aP<0.001;与模型组+sh-NC比较,bP<0.001。 表 2 类风湿关节炎小鼠模型不同组织中CD38 mRNA的表达水平(x±s)
Table 2. Expression levels of CD38 mRNA in different tissues of rheumatoid arthritis mice model(x±s)
组别 只数 关节滑膜 脾脏 淋巴结 对照组 3 1.01±0.17 1.00±0.14 1.00±0.09 模型组 3 1.53±0.06a 1.62±0.09a 1.68±0.09a 模型组+sh-NC 3 1.62±0.06 1.68±0.09 1.74±0.10 模型组+sh-CD38 3 1.26±0.05b 1.33±0.06b 1.45±0.09b F值 24.286 28.816 39.583 P值 <0.001 <0.001 <0.001 注:与对照组比较,aP<0.001;与模型组+sh-NC比较,bP<0.001。 表 3 类风湿关节炎小鼠模型脾脏中Th17、Treg及Treg/Th17细胞比例比较(x±s)
Table 3. Changes in the ratio of Treg/Th17 cells in the spleen of mice model of rheumatoid arthritis(x±s)
组别 只数 Th17(%) Treg(%) Treg/Th17 对照组 3 4.33±0.50 8.35±0.28 1.94±0.16 模型组 3 9.11±0.22a 2.85±0.12a 0.31±0.02a 模型组+sh-NC 3 9.10±0.38 3.08±0.11 0.34±0.03 模型组+sh-CD38 3 7.12±0.17b 5.31±0.28b 0.83±0.04b F值 130.498 436.264 235.754 P值 <0.001 <0.001 <0.001 注:与对照组比较,aP<0.05;与模型组+sh-NC比较,bP<0.05。 表 4 幼稚CD4+ T细胞极化处理后CD38的表达水平(x±s)
Table 4. Expression levels of CD38 in polarized CD4+ T cells(x±s)
组别 只数 CD38 对照组 3 1.00±0.05 极化组 3 1.63±0.06a 极化组+sh-NC 3 1.69±0.09 极化组+sh-CD38 3 1.28±0.05b F值 140.562 P值 <0.001 注:与对照组比较,aP<0.01;与极化组+sh-NC比较,bP<0.01。 表 5 CD4+ T细胞极化后Th17、Treg及Treg/Th17细胞比例的变化(x±s)
Table 5. Changes in Treg/Th17 cell ratio after CD4+ T cell polarization(x±s)
组别 只数 Th17(%) Treg(%) Treg/Th17 对照组 3 0.88±0.18 23.20±0.53 27.00±5.48 极化组 3 5.52±0.43a 17.97±0.99a 3.10±0.40a 极化组+sh-NC 3 5.10±0.47 18.40±0.56 3.62±0.23 极化组+sh-CD38 3 2.01±0.13b 20.83±0.45b 10.37±0.45b F值 136.469 51.182 48.950 P值 <0.001 <0.001 <0.001 注:与对照组比较,aP<0.05;与极化组+sh-NC比较,bP<0.05。 表 6 CD4+ T细胞极化后p-AKT的蛋白表达水平(x±s)
Table 6. p-AKT protein expression after CD4+ T cell polarisation
组别 只数 p-AKT p-AKT/AKT p-mTOR p-mTOR/mTOR 对照组 3 1.00±0.06 1.00±0.06 1.00±0.03 1.00±0.11 极化组 3 3.08±0.08a 3.08±0.12a 3.01±0.02a 2.98±0.13a 极化组+sh-NC 3 3.00±0.08 2.97±0.16 3.18±0.12 2.83±0.07 极化组+sh-CD38 3 2.48±0.09b 2.62±0.15b 1.70±0.10b 1.54±0.14b F值 454.545 166.347 456.507 212.903 P值 <0.001 <0.001 <0.001 <0.001 注:与对照组比较,aP<0.05;与极化组+sh-NC比较,bP<0.05。 -
[1] SPARKS J A. Rheumatoid arthritis[J]. Ann Intern Med, 2019, 170(1): Itc1-itc16. DOI: 10.7326/aitc201901010. [2] SMITH M H, BERMAN J R. What is rheumatoid arthritis?[J]. JAMA, 2022, 327(12): 1194. doi: 10.1001/jama.2022.0786 [3] 王涛, 李志军. 类风湿关节炎的诊断与治疗[J]. 中华全科医学, 2020, 18(2): 170-171. http://www.zhqkyx.net/article/id/db5b4b90-cd84-4faf-aea9-553bd1709ec4WANG T, LI Z J. Diagnosis and treatment of rheumatoid arthritis[J]. Chinese Journal of General Practice, 2020, 18(2): 170-171. http://www.zhqkyx.net/article/id/db5b4b90-cd84-4faf-aea9-553bd1709ec4 [4] LIN Y J, ANZAGHE M, SCHVLKE S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis[J]. Cells, 2020, 9(4): 880. doi: 10.3390/cells9040880 [5] JANG S, KWON E J, LEE J J. Rheumatoid arthritis: pathogenic roles of diverse immune cells[J]. Int J Mol Sci, 2022, 23(2): 905. doi: 10.3390/ijms23020905 [6] LEE G R. The balance of Th17 versus Treg cells in autoimmunity[J]. Int J Mol Sci, 2018, 19(3): 730. doi: 10.3390/ijms19030730 [7] YAN J B, LUO M M, CHEN Z Y, et al. The function and role of the Th17/Treg cell balance in inflammatory bowel disease[J]. J Immunol Res, 2020, 2020: 8813558. DOI: 10.1155/2020/8813558. [8] XU M, POKROVSKII M, DING Y, et al. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont[J]. Nature, 2018, 554(7692): 373-377. doi: 10.1038/nature25500 [9] VAN RAEMDONCK K, UMAR S, PALASIEWICZ K, et al. CCL21/CCR7 signaling in macrophages promotes joint inflammation and Th17-mediated osteoclast formation in rheumatoid arthritis[J]. Cell Mol Life Sci, 2020, 77(7): 1387-1399. doi: 10.1007/s00018-019-03235-w [10] PIEDRA-QUINTERO Z L, WILSON Z, NAVA P, et al. CD38: an immunomodulatory molecule in inflammation and autoimmunity[J]. Front Immunol, 2020, 11: 597959. DOI: 10.3389/fimmu.2020.597959. [11] CHINI C C S, PECLAT T R, WARNER G M, et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD(+) and NMN levels[J]. Nat Metab, 2020, 2(11): 1284-1304. doi: 10.1038/s42255-020-00298-z [12] FENG F B, QIU H Y. Effects of Artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis[J]. Biomed Pharmacother, 2018, 102: 1209-1220. doi: 10.1016/j.biopha.2018.03.142 [13] FLAHERTY S, REYNOLDS J M. Mouse naive CD4+ T cell isolation and in vitro differentiation into T cell subsets[J]. J Vis Exp, 2015(98): 52739. DOI: 10.3791/52739. [14] RADU A F, BUNGAU S G. Management of rheumatoid arthritis: an overview[J]. Cells, 2021, 10(11): 2857. DOI: 10.3390/cells10112857. [15] CONFORTI A, DI COLA I, PAVLYCH V, et al. Beyond the joints, the extra-articular manifestations in rheumatoid arthritis[J]. Autoimmun Rev, 2021, 20(2): 102735. DOI: 10.1016/j.autrev.2020.102735. [16] CHANG X, YUE L, LIU W, et al. CD38 and E2F transcription factor 2 have uniquely increased expression in rheumatoid arthritis synovial tissues[J]. Clin Exp Immunol, 2014, 176(2): 222-231. doi: 10.1111/cei.12268 [17] WANG H, FANG K, YAN W, et al. T-cell immune imbalance in rheumatoid arthritis is associated with alterations in NK cells and NK-like T cells expressing CD38[J]. J Innate Immun, 2022, 14(2): 148-166. doi: 10.1159/000516642 [18] AMICI S A, YOUNG N A, NARVAEZ-MIRANDA J, et al. CD38 is robustly induced in human macrophages and monocytes in inflammatory conditions[J]. Front Immunol, 2018, 9: 1593. DOI: 10.3389/fimmu.2018.01593. [19] COLE S, WALSH A, YIN X, et al. Integrative analysis reveals CD38 as a therapeutic target for plasma cell-rich pre-disease and established rheumatoid arthritis and systemic lupus erythematosus[J]. Arthritis Res Ther, 2018, 20(1): 85. doi: 10.1186/s13075-018-1578-z [20] FERGUSON I D, GRIFFIN P, MICHEL J J, et al. T cell receptor-independent, CD31/IL-17A-driven inflammatory axis shapes synovitis in juvenile idiopathic arthritis[J]. Front Immunol, 2018, 9: 1802. DOI: 10.3389/fimmu.2018.01802. [21] LIU K, ZHANG Y, LIU L, et al. miR-125 regulates PI3K/Akt/mTOR signaling pathway in rheumatoid arthritis rats via PARP2[J]. Biosci Rep, 2019, 39(1): BSR20180890. DOI: 10.1042/BSR20180890. [22] CHENG Q, CHEN M, LIU M, et al. Semaphorin 5A suppresses ferroptosis through activation of PI3K-AKT-mTOR signaling in rheumatoid arthritis[J]. Cell Death Dis, 2022, 13(7): 608. doi: 10.1038/s41419-022-05065-4 [23] CHEN K, LIN Z W, HE S M, et al. Metformin inhibits the proliferation of rheumatoid arthritis fibroblast-like synoviocytes through IGF-IR/PI3K/AKT/m-TOR pathway[J]. Biomed Pharmacother, 2019, 115: 108875. DOI: 10.1016/j.biopha.2019.108875.
计量
- 文章访问数: 339
- HTML全文浏览量: 96
- PDF下载量: 19
- 被引次数: 0