Exploring the activity and mechanism of Bidens pilosa L. extract against MRSA
-
摘要:
目的 以耐甲氧西林金黄色葡萄球菌(MRSA)标准菌株和临床菌株为研究对象,探究鬼针草水提物对MRSA的抗菌效果及作用机制。 方法 采用牛津杯法、微量肉汤稀释法评价鬼针草水提物对金黄色葡萄球菌ATCC25923、MRSA标准菌株ATCC43300以及50株MRSA临床分离株的抑菌作用,并确定其最小抑菌浓度(MIC);测定鬼针草水提物处理后菌液的电导率变化,以及核酸物质、可溶性蛋白等大分子的渗漏情况;利用qRT-PCR技术检测MRSA相关耐药基因的表达变化。 结果 鬼针草水提物针对ATCC25923、ATCC43300及MRSA临床分离株的MIC分别为125 mg/mL、250 mg/mL和15.625~250 mg/mL。鬼针草水提取物作用于MRSA能使其细胞膜通透性改变,进而导致核酸、可溶性蛋白等大分子物质外泄至细胞外。鬼针草水提物能抑制icaA基因的表达。 结论 鬼针草水提物能显著抑制MRSA的活性,其机制可能与影响MRSA细胞膜通透性以及生物膜耐药基因icaA相关。 -
关键词:
- 鬼针草 /
- 耐甲氧西林金黄色葡萄球菌 /
- 抗菌活性 /
- 抑菌机制
Abstract:Objective To evaluate the antibacterial activity of Bidens Pilosa L. extract against Methicillin-resistant Staphylococcus aureus (MRSA) and to elucidate its potential mechanism of action. Methods Oxford cup method and microbroth dilution method were used to evaluate the antibacterial effect of B. pilosa L. extract on S. aureus strain ATCC25923, MRSA standard strain ATCC43300, and fifty clinical MRSA isolates, and to determine the minimum inhibitory concentration (MIC). Changes in bacterial suspension conductivity and leakage of nucleic acids and soluble proteins were determined after the action of B. pilosa L. extract on MRSA. In addition, qRT-PCR technology was used to detect the expression changes of resistance-related genes. Results The MIC values of B. pilosa L. extract against ATCC25923, ATCC43300, and clinical MRSA strains were 125 mg/mL, 250 mg/mL, and 15.625-250 mg/mL, respectively. The extract of B. pilosa L. increased MRSA cell membrane permeability, leading to leakage of large molecules such as nucleic acids and soluble proteins. The extract of B. pilosa L. inhibited the expression of the biofilm-associated gene icaA. Conclusion The extract of B. pilosa L. can significantly inhibit the activity of MRSA. Its mechanism may be related to the impact on MRSA cell membrane permeability and suppression of biofilm-related gene expression. -
表 1 引物序列
Table 1. Primer sequences
引物名称 序列(5’→3’) 16S-F CGTGCTACAATGGACAATACAAA 16S-R ATCTACGATTACTAGCGATTCCA icaA-F GACGTTGGCTACTGGGATACTGA icaA-R ACACATGGCAAGCGGTTCATAC 表 2 鬼针草水提物抗MRSA抑菌试验结果
Table 2. Statistical analysis of the antibacterial activity of Bidens pilosa L. extract against MRSA
试验菌 抑菌圈 试验菌 抑菌圈 试验菌 抑菌圈 试验菌 抑菌圈 试验菌 抑菌圈 M1 - M11 + M21 + M31 + M41 + M2 + M12 + M22 + M32 + M42 + M3 + M13 + M23 + M33 - M43 + M4 + M14 - M24 + M34 + M44 - M5 - M15 + M25 + M35 + M45 + M6 - M16 + M26 + M36 + M46 + M7 + M17 + M27 + M37 + M47 + M8 + M18 + M28 - M38 + M48 + M9 - M19 + M29 + M39 + M49 + M10 - M20 + M30 + M40 + M50 + 注:“+”表示有抑菌圈;“-”表示无抑菌圈。 表 3 鬼针草水提物抗MRSA的MIC测定结果
Table 3. The MIC result of Bidens pilosa L. extract against MRSA
试验菌 M2 M3 M4 M7 M8 M11 M12 M13 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M29 M30 MIC(mg/mL) 125 15.625 125 125 15.625 250 125 125 125 125 125 125 250 125 250 125 250 125 125 125 250 125 125 试验菌 M31 M32 M34 M35 M36 M37 M38 M39 M40 M41 M42 M43 M45 M46 M47 M48 M49 M50 ATCC25923 ATCC43300 MIC(mg/mL) 250 125 125 250 125 250 250 125 125 250 250 62.5 250 125 250 250 250 250 125 250 表 4 鬼针草水提物作用MRSA后上清液可溶性蛋白含量比较(x±s)
Table 4. Determination of soluble protein content in the supernatant following treatment of MRSA with Bidens pilosa L. extract(x±s)
时间 对照组 1/2 MIC 1 MIC 0 min 33.32±11.09 41.02±4.79 251.89±32.95 60 min 34.51±13.66 1 351.29±397.76 3 071.59±670.51 120 min 49.87±19.21 2 141.28±658.27 5 015.69±924.81 -
[1] AQIB A I, IJAZ M, ANJUM A A, et al. Antibiotic susceptibilities and prevalence of Methicillin resistant Staphylococcus aureus (MRSA) isolated from bovine milk in Pakistan[J]. Acta Trop, 2017, 176: 168-172. doi: 10.1016/j.actatropica.2017.08.008 [2] LIU B G, XIE M, DONG Y, et al. Antimicrobial mechanisms of traditional Chinese medicine and reversal of drug resistance: a narrative review[J]. Eur Rev Med Pharmacol Sci, 2022, 26(15): 5553-5561. [3] WANG J L, LI S Y, MENG J W, et al. Baicalin acts as an adjuvant to potentiate the activity of azithromycin against Staphylococcus saprophyticus biofilm: an in vitro, in vivo, and molecular study[J]. Vet Res, 2022, 53(1): 83. DOI: 10.1186/s13567-022-01088-z. [4] 张卫英, 张艺, 余道军, 等. 黄柏提取物抗耐大环内酯类药物肺炎支原体的实验研究[J]. 中华全科医学, 2018, 16(10): 1702-1705. doi: 10.16766/j.cnki.issn.1674-4152.000464ZHANG W Y, ZHANG Y, YU D J, et al. The effect of Cortex Phellodendri extract on the macrolides-resistant Mycoplasma pneumoniae[J]. Chinese Journal of General Practice, 2018, 16(10): 1702-1705. doi: 10.16766/j.cnki.issn.1674-4152.000464 [5] 赵永师, 杜娜, 杜艳. 中草药对多重耐药菌的抑制作用及机制研究进展[J]. 中国感染控制杂志, 2024, 23(4): 530-537.ZHAO Y S, DU N, DU Y. Research progress in the inhibitory effect and mechanism of Chinese herbal medicine on multidrug-resistant organism[J]. Chinese Journal of Infection Control, 2024, 23(4): 530-537. [6] 王碧晴, 赵俊男, 张颖, 等. 鬼针草的药理作用研究进展[J]. 中医药导报, 2019, 25(18): 100-107.WANG B Q, ZHAO J N, ZHANG Y, et al. Advances in pharmacological effects of Bidenspilosa L. [J]. Guiding Journal of Traditional Chinese Medicine and Pharmacy, 2019, 25(18): 100-107. [7] 刘娜. 鬼针草药理作用研究进展[J]. 海峡药学, 2019, 31(12): 64-67.LIU N. Research progress on pharmacological effects of Bidens pilosa L. [J]. Strait Pharmaceutical Journal, 2019, 31(12): 64-67. [8] 沈艺玮, 林丽清, 林新华, 等. 鬼针草的化学成分及药理活性研究进展[J]. 福建医科大学学报, 2015, 49(1): 58-61.SHEN Y W, LIN L Q, LIN X H, et al. Research progress on chemical components and pharmacological activities of Bidens pilosa L. [J]. Journal of Fujian Medical University, 2015, 49(1): 58-61. [9] 汤迎爽, 张红宾, 康阿龙. 鬼针草的化学成分与药理作用研究进展[J]. 中医药导报, 2010, 16(11): 123-125.TANG Y S, ZHANG H B, KAGN A L. Bidens chemical composition and pharmacological research[J]. Guiding Journal of Traditional Chinese Medicine And Pharmacy, 2010, 16(11): 123-125. [10] 史雪艳, 李利红, 许舒娅. 鬼针草总黄酮超声辅助提取工艺优化及抑菌活性研究[J]. 饲料研究, 2021, 44(1): 69-72.SHI X Y, LI L H, XU S Y. Study on the optimization of ultrasonic-assistedextraction technology and antibacterial activity of total flavonoids from Bidens Pilosa L. [J]. Feed Research, 2021, 44(1): 69-72. [11] 王美霞. 鬼针草挥发油的提取、应用及抑菌活性测试研究[J]. 山东化工, 2022, 51(9): 39-40, 43.WANG M X. Study on the extraction, application and antibacterial activity testof volatile oil from bidens[J]. ShanDong Chemical Industry, 2022, 51(9): 39-40, 43. [12] 纪璇, 周光现, 袁裕珊. 白花鬼针草三种提取液成分预试及其抗氧化和抗菌活性研究[J]. 家畜生态学报, 2021, 42(12): 79-86.JI X, ZHOU G X, YUAN Y S. Preliminary study on the composition and antioxidant and antibacterial activities of three extracts from white flowered Bidens pilosa L[J]. Acta Ecologiae Animalis Domastici, 2021, 42(12): 79-86. [13] 郭平. 抗肺炎克雷伯菌活性蜚蠊肠道无色杆菌次级代谢产物的初步研究[D]. 广州: 广东药科大学, 2022.GUO P. The primary study on the anti-Klebsiella pneumoniae activity of the secondary metabolites of intestinal endophytic achromobacter from periplanta Americana[D]. Guangzhou: Guangdong Pharmaceutical University, 2022. [14] 国家药典委员会. 中华人民共和国药典: 四部[S]. 2025年版. 北京: 中国医药科技出版社, 2025.National Pharmacopoeia Committee. Pharmacopoeia of the People's Republic of China: Volume 4[S]. 2025 edition. Beijing: China Medical Science and Technology Press, 2025. [15] 曹铭晨, 方孟香, 黄欣. 小花鬼针草总黄酮的抗菌研究[J]. 天津中医药大学学报, 2018, 37(3): 239-241.CHAO M C, FANG M X, HUANG X. The antibacterial activity of total Flavonoids in Bidensbipinnata[J]. Jouranal of TianJing University of Traditional Chinese Medicine, 2018, 37(3): 239-241. [16] DIAO W R, HU Q P, ZHANG H, et al. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill. )[J]. Food Control, 2014, 35(1): 109-116. doi: 10.1016/j.foodcont.2013.06.056 [17] 许超群, 陈飞平, 梁旭茹, 等. 肉桂醛与ε-聚赖氨酸盐酸盐的抑菌活性及其协同抑菌机制初探[J]. 现代食品科技, 2023, 39(7): 24-31.XU C Q, CHEN F P, LIANG X R, et al. Preliminary Investigation of the Antimicrobial Activities and Synergies ofCinnamaldehyde and ε-Polylysine Hydrochloride[J]. Modern Food Science and Technology, 2023, 39(7): 24-31. [18] 肖怀秋, 李玉珍, 林亲录, 等. 花生肽亚铁胃肠仿生消化产物对金黄色葡萄球菌的抑菌机理[J]. 食品与发酵工业, 2020, 46(18): 1-8.XIAO H Q, LI Y Z, LIN Q L, et al. Antibacterial mechanism of gastrointestinal biomimetic digestants frompeanut peptide-ferrous on Staphylococcus aureus[J]. Food and Fermentation Industries, 2020, 46(18): 1-8. [19] 朱鲲鹏, 黄诗琪, 韩轶臻. 大黄素对多重耐药金黄色葡萄球菌的抑菌作用及其机制[J]. 武警医学, 2025, 36(1): 1-6, 11.ZHU K P, HUANG S Q, HAN Y Z. Antibacterial effect of emodin on multi-resistant staphylococcus aureus and its mechanism[J]. Medical Journal of Chinese People's Armed Police Force, 2025, 36(1): 1-6, 11. [20] DIETRICH M, BESSER M, DEBUS E S, et al. Human skin biofilm model: translational impact on swabbing and debridement[J]. J Wound Care, 2023, 32(7): 446-455. doi: 10.12968/jowc.2023.32.7.446 [21] 刘婧怡. 新型吲哚苯醌类化合物HL-J6和大黄素抗MRSA及其生物膜的作用与机制研究[D]. 重庆: 陆军军医大学, 2022.LIU J Y. Research on effect and mechanism of a Novel Indolylbenzoquinone compound HL-J6 and Emodin against MRSA and its biofilm[D]. Chongqing: Army Medical University, 2022. [22] BAI X, SHEN Y, ZHANG T H, et al. Anti-biofilm activity of biochanin A against Staphylococcus aureus[J]. Appl Microbiol Biotechnol, 2023, 107(2-3): 867-879. doi: 10.1007/s00253-022-12350-x [23] 金桂林, 杨军平, 许忠波, 等. 大蒜素联合环丙沙星抑制表皮葡萄球菌生物被膜的实验研究[J]. 江西中医药大学学报, 2019, 31(5): 77-80. [24] 戴雨芸, 李超, 袁中伟, 等. 香芹酚抑制金黄色葡萄球菌生物被膜的形成[J]. 微生物学通报, 2020, 47(3): 813-820.DAI Y Y, LI C, YUAN Z W, et al. Inhibition of Staphylococcus aureus biofilm by carvacrol[J]. Microbiology China, 2020, 47(3): 813-820. -
下载: