Citation: | SHENG Ling-ling, JIN hui, YANG Zai-xing, LI Bai-qing. Expression and significance of IL-17 and IL-22 in tuberculosis heat-resistant antigen and phospho-antigen stimulated cell amplified polarization[J]. Chinese Journal of General Practice, 2021, 19(4): 636-638,697. doi: 10.16766/j.cnki.issn.1674-4152.001881 |
[1] |
ABRI S A, KASAEVA T, MIGLIORI G B, et al. Tools to implement the World Health Organization end TB strategy: Addressing common challenges in high and low endemic countries[J]. Int J Infect Dis, 2020, 92(1): 60-68. http://www.sciencedirect.com/science/article/pii/S1201971220301004
|
[2] |
MENDE S P. Development of tuberculosis vaccines in clinical trials: current status[J]. Scand J Immunol, 2018, 88(4): e12710. doi: 10.1111/sji.12710
|
[3] |
NGUYEN D T, GRAVISS E A. Development and validation of a risk score to predict mortality during TB treatment in patients with TB-diabetes comorbidity[J]. BMC Infect Dis, 2019, 19(1): 10. doi: 10.1186/s12879-018-3632-5
|
[4] |
GLAZIOU P, FLOYD K, RAVIGLIONE M C, et al. Global epidemiology of Tuberculosis[J]. Semin Respir Crit Care Med, 2018, 39(3): 271-285. doi: 10.1055/s-0038-1651492
|
[5] |
OGONGO P, PORTERFIELD J Z, LESLIE A. Lung tissue resident memory T-cells in the immune response to Mycobacterium tuberculosis[J]. Front Immunol, 2019, 10(1): 992. http://www.ncbi.nlm.nih.gov/pubmed/31130965
|
[6] |
YANG Q T, ZHANG M X, CHEN Q, et al. Cutting edge: characterization of human tissue-resident memory T cells at different infection sites in patients with Tuberculosis[J]. J Immunol, 2020, 204(9): 2331-2336. doi: 10.4049/jimmunol.1901326
|
[7] |
LI Y X, WANG X F, TENG D, et al. Identification of the ligands of TCRγδ by screening the immune repertoire of γδT cells from patients with Tuberculosis[J]. Front Immunol, 2019, 10(1): 2282. http://www.ncbi.nlm.nih.gov/pubmed/31608066
|
[8] |
LAARHOVEN A V, DIAN S, DORP S V, et al. Immune cell characteristics and cytokine responses in adult HIV-negative Tuberculous meningitis: an observational cohort study[J]. Sci Rep, 2019, 9(1): 884. doi: 10.1038/s41598-018-36696-3
|
[9] |
STEINBACH S, VORDERMEIER H M, JONES G J, et al. CD4+ and γδ T cells are the main producers of IL-22 and IL-17A in lymphocytes from Mycobacterium bovis-infected cattle[J]. Sci Rep, 2016, 6(1): 29990. doi: 10.1038/srep29990
|
[10] |
SHEN H B, CHEN Z W. The crucial roles of Th17-related cytokines/signal pathways in M. tuberculosis infection[J]. Cell Mol Immunol, 2018, 15(3): 216-225. doi: 10.1038/cmi.2017.128
|
[11] |
VENKEN K, JACQUES P, MORTIER C, et al. RORγt inhibition selectively targets IL-17 producing iNKT and γδ-T cells enriched in spondyloarthritis patients[J]. Nat Commun, 2019, 10(1): 9. doi: 10.1038/s41467-018-07911-6
|
[12] |
WU Y, FANG Y M, DING L, et al. Activation and regulation of blood Vδ2 T cells are amplified by TREM-1+ during active pulmonary Tuberculosis[J]. J Immunol, 2018, 200(5): 1627-1638. http://www.onacademic.com/detail/journal_1000040185762810_8c2f.html
|
[13] |
唐洁, 陈策, 查成, 等. 基于结核杆菌耐热抗原小分子多肽刺激人外周血T细胞产生TNF-α和IFN-γ鉴别肺结核和潜伏性结核感染[J]. 南方医科大学学报, 2017, 37(11): 1442-1447. doi: 10.3969/j.issn.1673-4254.2017.11.03
|
[14] |
LAWAND M, DM J, DN M C. Key features of gamma-delta T-cell subsets in human diseases and their immunotherapeutic implications[J]. Front Immunol, 2017, 8(1): 761. http://hal.upmc.fr/hal-01564945/document
|
[15] |
PAPOTTO P H, REINHARDT A, PRINZ I, et al. Innately versatile: γδ17 T cells in inflammatory and autoimmune diseases[J]. J Autoimmun, 2018, 87(1): 26-37. http://www.researchgate.net/profile/Pedro_Papotto/publication/321588333_Innately_versatile_gd17_T_cells_in_inflammatory_and_autoimmune_diseases/links/5a6b31d5a6fdcc2aedee78e5/Innately-versatile-gd17-T-cells-in-inflammatory-and-autoimmune-diseases.pdf
|
[16] |
WANG Y M, TAO Y H. Tuberculosis-associated IgA nephropathy[J]. J Int Med Res, 2018, 46(7): 2549-2557. doi: 10.1177/0300060518774127
|
[17] |
TIMOTEO R P, SILVA M V, MIGUEL C B, et al. Th1/Th17-Related cytokines and chemokines and their implications in the pathogenesis of pemphigus vulgaris[J]. Mediators Inflamm, 2017, 2017(1): 7151285. http://gooa.las.ac.cn/external/download/1415836/5854919/7151285.pdf
|
[18] |
MAZA M, MOLINS B, MESQUIDA M, et al. Interleukin-22 serum levels are elevated in active scleritis[J]. Acta Ophthalmol, 2016, 94(6): e395-399. doi: 10.1111/aos.13005
|
[19] |
盛玲玲, 金辉, 刘东红, 等. IFN-γ和IL-17在结核病患者γδ T细胞中的表达及意义[J]. 中华全科医学, 2018, 16(11): 1875-1878. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201811032.htm
|
[20] |
BASILE J I, KVIATCOVSKY D, ROMERO M M, et al. Mycobacterium Tuberculosis multi-drug-resistant strain m induces IL-17+ IFNγ- CD4+ T cell expansion through an IL-23 and TGF-β-dependent mechanism in patients with MDR-TB Tuberculosis[J]. Clin Exp Immunol, 2017, 187(1): 160-173. http://europepmc.org/abstract/med/27681197
|
[21] |
REINHARDT A, PRINZ I. Whodunit? The contribution of interleukin (IL)-17/IL-22-producing γδ T Cells, αβ T cells, and innate lymphoid cells to the pathogenesis of spondyloarthritis[J]. Front Immunol, 2018, 9: 885. doi: 10.3389/fimmu.2018.00885
|