Citation: | LI Yong, GUO Min, KANG Ying-ying. Research progress of microRNA in thyroid cancer[J]. Chinese Journal of General Practice, 2022, 20(2): 298-301, 351. doi: 10.16766/j.cnki.issn.1674-4152.002337 |
[1] |
MILLER K D, NOGUEIRA L, MARIOTTO A B, et al. Cancer treatment and survi vorship statistics, 2019[J]. CA Cancer J Clin, 2019, 69(5): 363-385. doi: 10.3322/caac.21565
|
[2] |
YIN D D, LI S S, SHU Q Y, et al. Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds[J]. Gene, 2018, 666(8): 72-82. http://smartsearch.nstl.gov.cn/paper_detail.html?id=733c382f4675b54b41e18f61deecf675
|
[3] |
ZEALY R W, WRENN S P, DAVILA S, et al. microRNA-binding pro-teins: Specificity and function[J]. Wiley Interdiscip Rev RNA, 2017, 8(5): e1414. doi: 10.1002/wrna.1414
|
[4] |
马瀚博, 李怀芳. MicroRNA在卵巢癌早期诊断及预后中应用的研究进展[J]. 中华全科医学, 2018, 16(5): 826-829. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201805043.htm
|
[5] |
COUZIGOU J M, LAURESSERGUES D, ANDRE O, et al. Positive gene regulation by a natural protective miRNA enables arbuscular mycorrhizal symbiosis[J]. Cell Host Microbe, 2017, 21(1): 106-112. doi: 10.1016/j.chom.2016.12.001
|
[6] |
CHEN P, CHEN J, HE L, et al. Identification of circRNA-miRNA-mRNA regulatory network in bladder cancer by integrated analysis[J]. Urologia Internationalis, 2021, 105(7-8): 705-715. doi: 10.1159/000512066
|
[7] |
WANG X, DONG J, LI X, et al. CPSF4 regulates circRNA formation and microRNA mediated gene silencing in hepatocellular carcino-ma[J]. Oncogene, 2021, 40(25): 4338-4351. doi: 10.1038/s41388-021-01867-6
|
[8] |
王艺霏, 敖翔, 刘英, 等. 线粒体miRNA及其生物学功能[J]. 中国细胞生物学学报, 2018, 40(7): 1247-1252. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZZ201807023.htm
|
[9] |
BARTEL D P. Metazoan microRNAs[J]. Cell, 2018, 173(1): 20-51. doi: 10.1016/j.cell.2018.03.006
|
[10] |
GHOSH U, ADHYA S. Posttranscriptional regulation of cyclin D1 by ARE-binding proteins AUF1 and HuR in cycling myoblasts[J]. J Biosci, 2018, 43(4): 685-691. doi: 10.1007/s12038-018-9788-8
|
[11] |
SHEHATA R H, ABDELMONEIM S S, OSMAN O A, et al. Deregulation of miR-34a and Its chaperon hsp70 in hepatitis C virus-induced liver cirrhosis and hepatocellular carcinoma patients[J]. Asian Pac J Cancer Prev, 2017, 18(9): 2395-2401. http://europepmc.org/articles/PMC5720642?pdf=render
|
[12] |
MANEECHOTESUWAN K. Role of microRNA in severe asthma[J]. Respir Investig, 2019, 57(1): 9-19. doi: 10.1016/j.resinv.2018.10.005
|
[13] |
SHI Y, DAI S, QIU C, et al. MicroRNA-219a-5p suppresses intestinal in flammation through inhibiting Th1/Th17-mediated immune responses in in flammatory bowel disease[J]. Mucosal Immunol, 2020, 13(2): 303-312. doi: 10.1038/s41385-019-0216-7
|
[14] |
HU Y, DU G, LI G, et al. The miR-122 inhibition alleviates lipid accumu lation and inflammation in NAFLD cell model[J]. Arch Physiol Bio chem, 2021, 127(5): 385-389. doi: 10.1080/13813455.2019.1640744
|
[15] |
WAN X, CHEN S, FANG Y, et al. Mesenchymal stem cell derived extracellu lar vesicles suppress the fibroblast proliferation by downregulating FZD6 expression in fibroblasts via micrRNA-29b-3p in idiopathic pulmo nary fibrosis[J]. J Cell Physiol, 2020, 235(11): 8613-8625. doi: 10.1002/jcp.29706
|
[16] |
ENGEDAL N, ZEROVNIK E, RUDOV A, et al. From oxidative stress damage to pathways, networks, and autophagy via microRNAs[J]. Oxid Med Cell Lon gev, 2018, 12(4): 4968321. http://downloads.hindawi.com/journals/omcl/2018/4968321.pdf
|
[17] |
BIGGAR K K, STOREY K B. Functional impact of microRNA regulation in models of extreme stress adaptation[J]. J Mol Cell Biol, 2018, 10(2): 93-101. doi: 10.1093/jmcb/mjx053
|
[18] |
LI Y, ZHANG H, DU Y, et al. Extracellular vesicle microRNA cargoes from intermittent hypoxia-exposed cardiomyocytes and their effect on endothe lium[J]. Biochem Biophys Res Commun, 2021, 548(9): 182-188. http://www.researchgate.net/publication/347640623_Extracellular_vesicle_microRNA_cargoes_from_intermittent_hypoxia-exposed_cardiomyocytes_and_their_effect_on_endothelium
|
[19] |
CHAMORRO-JORGANES A, ANWAR M, EMANUELI C. Changes in high-density lipo protein microRNA might create a lasting memory of high-fat diet[J]. Cardiovasc Res, 2020, 116(7): 1237-1239. doi: 10.1093/cvr/cvz334
|
[20] |
周丽杰, 金焰, 于景翠. 外泌体microRNA在肿瘤相关成纤维细胞与肿瘤细胞间交互影响中作用研究进展[J]. 中华实用诊断与治疗杂志, 2020, 34(12): 1282-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZD202012024.htm
|
[21] |
RUHRMANN S, EWING E, PIKET E, et al. Hypermethylation of MIR21 in CD4+ T cells from patients with relapsing-remitting multiple sclerosis associ-ates with lower miRNA-21 levels and concomitant up regulation of its target genes[J]. Mult Scler, 2018, 24(10): 1288-1300. doi: 10.1177/1352458517721356
|
[22] |
程燕, 何启胜. 血清miR-451a、miR-25-3p、GAS8-AS1联合检测用于早期甲状腺乳头状癌的诊断[J]. 国际内分泌代谢杂志, 2020, 40(5): 300-303.
|
[23] |
JIANG K, LI G, CHEN W, et al. Plasma exosomal miR-146b-5p and miR-222-3p are potential biomarkers for lymph node metastasis in papillary thyroid carcinomas[J]. Onco Targets Ther, 2020, 13(2): 1311-1319. http://www.researchgate.net/publication/339215309_Plasma_Exosomal_miR-146b-5p_and_miR-222-3p_are_Potential_Biomarkers_for_Lymph_Node_Metastasis_in_Papillary_Thyroid_Carcinomas/download
|
[24] |
YE W, DENG X, FAN Y. Exosomal miRNA423-5p mediated oncogene activity in papillary thyroid carcinoma: A potential diagnostic and biological tar get for cancer therapy[J]. Neoplasma, 2019, 66(4): 516-523. doi: 10.4149/neo_2018_180824N643
|
[25] |
刘静, 陈红星, 许密, 等. 术后引流液外泌体hsa-miR-609在甲状腺乳头状癌发生发展中的作用及其机制探讨[J]. 岭南现代临床外科, 2019, 19(2): 150-153. doi: 10.3969/j.issn.1009-976X.2019.02.006
|
[26] |
WANG Y, CEN A, YANG Y, et al. miR-181a, delivered by hypoxic PTC-secreted exosomes, inhibits DACT2 by downregulating MLL3, leading to YAP-VEGF-mediated angiogenesis[J]. Mol Ther Nucleic Acids, 2021, 24(2): 610-621. http://www.sciencedirect.com/science/article/pii/S2162253121000627
|
[27] |
张建祥, 马艳梅, 张素琴, 等. 血浆微小RNA-21鉴别甲状腺滤泡癌与乳头状甲状腺癌[J]. 中华实验外科杂志, 2018, 35(10): 1921-1923. doi: 10.3760/cma.j.issn.1001-9030.2018.10.043
|
[28] |
MA W, ZHAO X, LIANG L, et al. miR-146a and miR-146b promote proliferation, migration and invasion of follicular thyroid carcinoma via inhibition of ST8SIA4[J]. Oncotarget, 2017, 8(17): 28028-28041. doi: 10.18632/oncotarget.15885
|
[29] |
李莹, 刁为英, 王彩霞, 等. 甲状腺滤泡癌中miR-133的表达及其诊断意义[J]. 临床与实验病理学杂志, 2020, 36(7): 779-783. https://www.cnki.com.cn/Article/CJFDTOTAL-LSBL202007007.htm
|
[30] |
SASANAKIETKUL T, MURTHA T D, JAVID M, et al. Epigenetic modifications in poorly differentiated and anaplastic thyroid cancer[J]. Mol Cell Endo crinol, 2018, 469(5): 23-37. http://www.onacademic.com/detail/journal_1000039916680010_d901.html
|
[31] |
ZHANG X, DONG S, JIA Q, et al. The microRNA in ventricular remodeling: The miR-30 family[J]. Biosci Rep, 2019, 39(8): BSR20190788. doi: 10.1042/BSR20190788
|
[32] |
LI X F, SHEN W Z, JIN X, et al. Let-7c regulated epithelial-mesenchymal transition leads to osimertinib resistance in NSCLC cells with EGFR T790M mutations[J]. Sci Rep, 2020, 10(1): 11236. doi: 10.1038/s41598-020-67908-4
|
[33] |
ZHANG X, LIU L, DENG X, et al. MicroRNA 483-3p targets pard3 to potentiate TGF-beta1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells[J]. Oncogene, 2019, 38(5): 699-715. doi: 10.1038/s41388-018-0447-1
|
[34] |
MASOOD N, BASHARAT Z, KHAN T, et al. Entangling relation of micro RNA-let7, miRNA-200 and miRNA-125 with various cancers[J]. Pathol Oncol Res, 2017, 23(4): 707-715. doi: 10.1007/s12253-016-0184-0
|
[35] |
BU Q, YOU F, PAN G, et al. MiR-125b inhibits anaplastic thyroid cancer cell migration and invasion by targeting PIK3CD[J]. Biomed Pharma-cother, 2017, 88(4): 443-448. http://www.onacademic.com/detail/journal_1000039818065310_1912.html
|
[36] |
REDA E S S, CRISTANTE J, GUYON L, et al. MicroRNA therapeutics in cancer: Current advances and challenges[J]. Cancers (Basel), 2021, 13(11): 2680. doi: 10.3390/cancers13112680
|
[37] |
TITOV S E, IVANOV M K, DEMENKOV P S, et al. Combined quantitation of HMGA2 mRNA, microRNAs, and mitochondrial-DNA content enables the identifi-cation and typing of thyroid tumors in fine-needle aspiration smears[J]. Bmc Cancer, 2019, 19(1): 1010. doi: 10.1186/s12885-019-6154-7
|
[38] |
ROMEO P, COLOMBO C, GRANATA R, et al. Circulating miR-375 as a novel prognostic marker for metastatic medullary thyroid cancer pa-tients[J]. Endocr Relat Cancer, 2018, 25(3): 217-231. doi: 10.1530/ERC-17-0389
|
[39] |
AUBERT S, BERDELOU A, GNEMMI V, et al. Large sporadic thyroid medullary carcinomas: Predictive factors for lymph node involvement[J]. Virchows Arch, 2018, 472(3): 461-468. doi: 10.1007/s00428-018-2303-7
|
[40] |
JOO L, WEISS J, GILL A J, et al. RET kinase-regulated microRNA-153-3p improves therapeutic efficacy in medullary thyroid carcino-ma[J]. Thyroid, 2019, 29(6): 830-844. doi: 10.1089/thy.2018.0525
|
[41] |
ZAHEER U, FAHEEM M, QADRI I, et al. Expression profile of microRNA: An emerging hallmark of cancer[J]. Curr Pharm Des, 2019, 25(6): 642-653. doi: 10.2174/1386207322666190325122821
|
[42] |
李德宇, 李娜, 李文亮, 等. miR-130b与碘难治性分化型甲状腺癌的关系研究[J]. 实用药物与临床, 2019, 22(4): 368-373. https://www.cnki.com.cn/Article/CJFDTOTAL-LYLC201904007.htm
|